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Abstract

The financial-grade API (FAPI) offers secure and interoperable profiles for OAuth
and OpenID Connect. It was created to fit the high-security standard needed to deal
with sensitive data such as banking details. The profiles employ existing security
measures of the OpenID Connect and OAuth standardizations, such as JWT-Secured
Authorization Request (JAR), Pushed Authorization Request (PAR) or Mutual TLS
(MTLS). With concepts as sender-constrained access token, signed requests and
secure client authentication, the FAPI aims to protect APIs with high risks. Inter-
operability is achieved by limiting possible configurations and a certification process
offered by the OpenID Foundation. Thus, the FAPI profiles ensure compatibility be-
tween FAPI certified clients and authorization servers.

This bachelor’s thesis aims to evaluate the security promised by the FAPI. Therefore,
we outlined the security extensions employed by the FAPI. We explained the FAPI
profiles and highlighted their differences. Additionally, we compared the security
features used by the FAPI to features used by OAuth and OpenID Connect. Then,
we set up a FAPI-certified client and authorization server and created a testing tool.
The tool verifies the functionality of the setup and enables further manual testing
in the environment. It relies on the mitmproxy addon framework. Moreover, we
created a security catalog, including known attacks on OAuth and OpenID Connect
and the FAPI’s countermeasures.

In summary, we extracted the variety of security measures the FAPI employs. We
showed the security improvements the FAPI provides. These include interoperabil-
ity, enforcement of security best practices, and security extensions. We provide
comparison tables of features and a security catalog of know attacks and the FAPI’s
countermeasures. These may serve as a reference for future work. We created a
testing tool for a FAPI-certified implementation. The implementation can easily be
extended for further testing.
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1 Introduction

This chapter introduces the bachelor’s thesis “Analysis of the Financial-grade API
(FAPI)”. First, the motivation is presented, highlighting the need for a secure OAuth
and OpenID Connect (OIDC) profile in a high-risk environment, such as FinTec.
Then, related work, covering the financial-grade API (FAPI), is presented. Fi-
nally, the contribution of this thesis is emphasized, and its organization is out-
lined.

1.1 Motivation

When the Payment Service Directive 2 (PSD2) [67] was published by the European
Parliament in 2015, about 6,000 banks were required to become API providers by
the end of 2017 [56]. With Open Banking [21], end-users should gain the freedom
to securely share their financial data with third parties, including transaction de-
tails and payment initiation rights [21]. It further offers opportunities for more
innovations in the increasingly important FinTech sector by providing Open APIs
[68].

In the past, (FinTech) applications used screenscraping to access the user’s data.
With screenscraping, users are impersonated through password sharing. This method
is not only inefficient, but also highly insecure [22].
The need for a more secure and efficient solution emerged, but OAuth’s func-
tionalities did not suffice since the core framework had significant security prob-
lems back in 2015 [56]. Moreover, OAuth 2.0, being an authorization framework,
was too “underspecified” to deal with the need for interoperability and security
[56].

For this reason, OAuth was adapted to fit the high-security standard needed to deal
with sensitive data such as banking details [68]. Therefore, the financial-grade API
Working Group was established by the Open ID Foundation [20]. The group applied
existing security measures of the OpenID Connect standardization to strengthen
OAuth API authorization. The result is called the financial-grade API (FAPI) and
offers a safe and interoperable alternative to screenscraping [56].
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1.2 Related Work

In 2019, Fett et al. [59] were the first to formally analyze and prove the secu-
rity of the Financial Grade API profile. The analysis was conducted utilizing the
Web Infrastructure Model (WIM) to cover a variety of possible combinations of
profiles, security measures, and flows. It guarantees previously defined security
characteristics. The authors discovered attack vectors regarding authentication,
authorization, and session management and were also able to present suitable miti-
gations.

In 2021, Fett [58] introduced the FAPI 2.0, an updated, simpler, and more in-
teroperable version of the original FAPI specification. He describes the learn-
ings from practical applications and the developing process of the FAPI working
group by outlining the FAPI 2.0 security model and core elements of the specifica-
tion.

In 2018, Damabi [65] performed a security analysis of the OpenID Financial-grade
API by modeling the two profiles in the FKS Web Model. The formal analysis
revealed attacks regarding Proof Key for Code Exchange (PKCE) and token reuse,
against which countermeasures were presented.

In 2021, Mohamed [66] extended a prototype implementation to fit the requirements
of the second version of the OpenID financial-grade API. The FAPI 2.0 baseline and
the FAPI 2.0 advanced profiles were introduced and included in the prototype to help
developers and researchers thoroughly understand FAPI 2.0.

In 2013, Lodderstedt et al. [15] published the “OAuth 2.0 Threat Model and Se-
curity Considerations”, extending the security considerations stated in RFC 6749
[13]. The authors created a threat model, defining potential threats, such as open
redirectors or an access token leak in the browser history. New security consid-
erations were introduced, such as token binding or limiting the token expiration
time.

Since 2017, the Internet Engineering Task Force (IETF) is continuously working
on the “OAuth 2.0 Security Best Current Practice” [10], recommending security
measures and other practices, gained form practical experience. The Best Current
Practice aims to extend the OAuth threat model and collect up-to-date mitigation
techniques.

In addition to the OAuth 2.0 Threat Model and the OAuth 2.0 Security Best Current
Practices, other standards are related to this work. They provide further information
on the techniques introduced in this thesis.

• The OAuth 2.0 Authorization Framework [13]

• OAuth 2.0 Device Authorization Grant [19]

• The OAuth 2.1 Authorization Framework [?]
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• OpenID Connect Core 1.0 [7]

• OpenID Connect Client-Initiated Backchannel Authentication Flow - Core 1.0
[54]

• Financial-grade API Security Profile 1.0 - Part 1: Baseline [22]

• Financial-grade API Security Profile 1.0 - Part 2: Advanced [23]

• Financial-grade API Security Profile 2.0 - Part 1: Baseline [30]

• Financial-grade API Security Profile 2.0 - Part 2: Advanced [28]

• Financial-grade API Client Initiated Backchannel Authentication Profile [53]

• Financial-grade API 2.0 Attacker Model [29]

• Financial-grade API JWT Secured Authorization Response Mode for OAuth
2.0 (JARM) [2]

• The OAuth 2.0 Authorization Framework: JWT-Secured Authorization Re-
quest (JAR) [32]

• Proof Key for Code Exchange by OAuth Public Clients [17]

• OAuth 2.0 Pushed Authorization Requests [33]

• OAuth 2.0 Rich Authorization Requests [27]

• OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access
Tokens [31]

• OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer (DPoP)
[34]

1.3 Contribution

In this bachelor’s thesis, the financial-grade API standards are systematically ana-
lyzed. The thesis aims to answer the following research questions:

1. Which concepts enable the, according to the FAPI Working group [22], high-
security level of the FAPI?

2. Do the FAPI profiles provide security improvements compared to the classic
OAuth and OIDC flows?

3. Which known attacks are applicable on FAPI implementations - clients and
providers?
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For this purpose, we elaborate the security measures presented in the FAPI stan-
dards in detail. The two FAPI standards and their profiles are explained, and their
differences are highlighted. Additionally, we compare the FAPI standards to the
underlying standards OAuth and OIDC regarding their security features. Then, we
present well-known attacks on OAuth and OIDC, and evaluate which security mea-
sures the FAPI employs as protection. Further, we set up a FAPI-certified client
and an authorization server (AS) and document their security features. We create
a testing tool to ensure their functionality and to enable further testing. Finally, we
evaluate the security of the FAPI by considering the results of the comparison, the
security catalog, and the outcomes of working with the certified FAPI implementa-
tions.

1.4 Organization of this Thesis

This bachelor’s thesis is organized into eight chapters.

Chapter 1 introduces this thesis by motivating the FAPI and presenting related
work. Further, the contribution of this thesis is highlighted and the organization of
it is displayed.

Chapter 2 explains fundamental OAuth and OIDC concepts that form the basis
of the FAPI. The concepts of OAuth 2.0, OAuth 2.1, and OIDC are described, the
attacker models are introduced, and additional OAuth and OIDC security extensions
are presented.

Chapter 3 introduces the FAPI. The baseline and advance profile of each FAPI 1.0
and 2.0 are explained. Further, the FAPI Client-Initiated Backchannel Authentica-
tion (CIBA) profile is described and the FAPI attacker model is presented.

Chapter 4 displays a tabular comparison of the security features of the FAPI pro-
files and standards, compared to OAuth 2.0, OAuth 2.1, and OIDC. The FAPI CIBA
profile is compared to the OIDC CIBA standard and the OAuth 2.0 Device Autho-
rization Grant. Additionally, the different attacker models are compared to put the
comparison in perspective.

Chapter 5 presents an exemplary setup of a FAPI-certified client and AS. The
selection of the Gluu Server 4.2 and oxd Client API 4.2 is explained. We describe
the testing environment we have created. Further, the security features of both
client and AS are documented.
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Chapter 6 depicts a collection of known OAuth and OIDC attacks. The security
catalog describes each attack and its countermeasures. Additionally, the security
measures employed by the FAPI are noted for each attack.

Chapter 7 evaluates the results of the conducted analysis. It aims to answer the
research questions by evaluating the results of the comparison and the security
catalog. Additionally, the impressions gained from working with real-world FAPI
implementations are incorporated as well.

Chapter 8 concludes this work and suggests further work such as an extension of
the testing tool.





2 Fundamentals

The financial-grade API is a security profile for OAuth, protected by OIDC secu-
rity measures and additional extensions, described in this chapter. OAuth is the
de-facto standard designed for API authorization. Without password sharing, the
end-user allows a client application to access their data stored in another applica-
tion. The authorization of the client application is delegated to an authorization
server, where the end-user already has an account. OpenID Connect (OIDC) is
a security protocol built on top of OAuth, which adds an authentication layer to
enable third-party logins. With OIDC, Single Sign-On (SSO) scenarios can be real-
ized.

2.1 OAuth

OAuth 2.0 is an authorization framework that was developed by the Internet Engi-
neering Task Force (IETF) in 2012 [13]. The security standard enables an end-user
to permit a third-party application access to their resources in another application.
The specified ways a user grants authorization is called a authorization grant. For
the communication between the different participants, protocol endpoints are de-
fined.

In OAuth 2.0 grants, four different parties participate in the authorization process.
The resource owner (RO) can be an end-user who permits the client to access their
protected resources at the resource server.
The resource server (RS) holds protected resources and allows access if a valid access
token is provided.
The client is an application which requests access to the users data at the autho-
rization server. After successful authorization, the client can send resource requests
to the RS, to access the user’s protected resources.
In OAuth, two different types of clients are defined. The confidential client is able to
store secrets, meaning that it can authenticate at the authorization server with its
client credentials, which consist of a client_id and a client_secret. An example
for a Confidential client can be a webserver. On the other hand, the public client
cannot keep secrets and with that cannot authenticate at the authorization server
since it might be a native or a single-page application. The client has one protocol
endpoint, called the Redirection Endpoint, which is used by the authorization server
for returning authorization credentials, as the authorization code, through the ROs
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user agent (UA).
The authorization server (AS) can authenticate the RO and issue tokens. Access to-
kens and refresh tokens are issued to the client after receiving authorization consent
by the RO. In some cases, the AS and the RS are deployed on the same machine. In
a financial context, it can be a bank. The AS has different protocol endpoints (EP),
used by the client. At the Authorization Endpoint the client obtains authorization
from the end-user. For this, the RO is redirected to the endpoint, where they are
authenticated and grant permission, before being redirected to the client redirection
endpoint. At the Token Endpoint, the client receives an access token and an optional
refresh token. Additionally, confidential clients need to authenticate by using their
client credentials.

The AS can issue authorization codes, access tokens and refresh tokens. Autho-
rization codes are bound to the client_id and redirect_uri and have a short
lifetime. They can only be exchanged once for an access token. Access tokens are
bearer tokens by default, meaning that the party which holds the access token can
redeem it at the AS, even if it was not issued for them. The access token is a
string representing the granted scopes and the lifetime of the token. This way, the
duration of access can be limited. Thus, the RO can grant finer-grained access to
their resources. When the access token becomes invalid, e.g., it expires, the client
can receive a new one in exchange for the refresh token. The new access token
might have fewer access rights and a shorter lifetime. Refresh tokens are strings
which represent the scopes granted by the RO and are only send to the AS not to
RSs.

2.1.1 OAuth 2.0 Authorization Code Grant

OAuth defines four types of grants: the authorization code grant, the implicit grant,
the resource owner password credentials grant and the client credentials grant [13].
The authorization code grant is also employed in the FAPI.
In this grant, the AS issues an authorization code and sends it through the RO’s
UA to the client, who can redeem the code at the token endpoint in exchange for
an access token. Not sending the access token through the RO’s UA is a security
benefit of the authorization code grant. The transmission of the access token through
the backchannel significantly reduces the attack surface. The access token is not
disclosed to the end-user or others.

The authorization code grant is displayed in Figure 2.1. In step 1 and step 2
in Figure 2.1, the RO demands access to their resources and starts the protocol
flow. The client then sends the authorization request through the RO’s UA to
the AS’s authorization endpoint in step 3. The authorization request includes the
response_type, the client_id, the redirect_uri and might include a redirect_-
uri and the scope and state parameters. The response_type specifies the grant
type, in this case its value is code. The client also includes its public client_id,
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User Agent

response_type=code, client_id, redirect_uri, scope=openid, [state], [nonce]

End-User Client Application Auth. Server
(Auth.&Token EP)

6. Token Request

Resource Server
(UserInfo EP)

grant_type=authorization_code, code, redirect_uri, client_id, client_secret

8. Resource Request: access_token

3. Auth. Request

1. Req. Resource 2. GET Resource

7. Token Response:

9. Resource Response: resource
10. resource

4. User Authentication

5. Auth. Response (redirect to redirect_uri):

code, [state]

access_token, token_type, [expires_in], [refresh_token], id_token

Figure 2.1: Authorization Code Grant. In red: additional parameters for the
OpenID Connect Authorization Code Flow.

which has been issued previously by the AS after an initial client registration. The
string identifies the client since it is unique to the AS. The optional redirect_uri
specifies the address to which the AS shall redirect the authorization response, while
the optional scope parameter defines a list of strings which express the access range
of the access token the end-user agrees to. Moreover, the framework recommends
including the state parameter in the request to prevent CSRF (Cross-site request
forgery) attacks.

After the authorization request, the AS authenticates the end-user and obtains con-
sent to the scope of the access token (in step 4). In the case of approval, the AS
redirects the authorization response to the client’s specified redirect_uri (step
5). The response contains the issued authorization code and the previously received
state value.

With the token request in step 6, the client redeems the code at the token end-
point to receive an access token. The request further includes the grant_type, the
redirect_uri, if it was sent in the authorization request, and the client_id if
the client is public. In case of a confidential client, it has to authenticate with its
client credentials, consisting of client_id and client_secret, before receiving the
access token.

After a successful client authentication and validation of the authorization code
as well as the redirect_uri, the AS sends the token response (step 7), contain-
ing an access token. The response also contains the token_type and an optional
expiration date expires_in. If requested, the response might include an refresh
token.

In step 8, the client can request the protected resource at the RS, with the respective
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tokens. After the RS successfully validates the received token, it responds with
the requested resource (step 9), which can be forwarded to the end-user (step
10).

2.1.2 OAuth 2.0 Device Authorization Grant

In 2019, the “OAuth 2.0 Device Authorization Grant” [19] was published as an
OAuth 2.0 extension. We introduce its concepts to compare this grant to the OIDC
CIBA flow and the FAPI CIBA flow (see section 4.4). It specifies an OAuth grant
for client devices, such as smart TVs or printers, that can not provide a browser or
receive user input. The grant is also feasible for devices that cannot receive requests.
Therefore, the “Device Flow” is designed without UA-based authorization and user
authentication on the device itself. Instead, the RO validates the authorization
request in the UA of a separate device, such as a smartphone. Since there is no
direct communication between the client device and the end-user, the device must
be capable of displaying codes and URIs to the user.

Client

[polling]

Auth. Server

authorization
request

Client Identifier

End User
at

Browser

Device Code, User Code & Verificaton URI

User Code

End user reviews


Device Code & Client Identifier

Access Token (& Refresh Token)

& Verification URI

Figure 2.2: Device Authorization Flow. [19]

The device authorization flow, as displayed in Figure 2.2, begins with the client send-
ing the authorization request, which includes its client identifier. The AS answers
with the authorization response. The response includes a device code, a user code,
and a verification URI. Then, the client displays the user code and the verification
URI to the end-user, which then visits the URI on another device. There, the AS au-
thenticates the RO, which enters the received user code. After the AS has checked
the provided user code, the end-user validates the authorization request. During
this process, the client polls the AS for an access token. Thereby, both device code
and client identifier are included in the polling requests. The AS sends the token
response, if the authorization request is accepted and the device code, included in
the polling request, is validated. The token response includes an access token and
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can contain a refresh token. If the client is not granted access, the AS responds with
an error. If the user has not yet validated the authorization request, the AS informs
the client about that.

2.1.3 OAuth 2.0 Attacker Model

The “OAuth 2.0 Threat Model and Security Considerations” [15] defines certain ca-
pabilities and limitations of a potential attacker. An OAuth 2.0 attacker is able to
monitor any communication between clients and ASs as well as clients and RSs, but
not between ASs and RSs. They can fully access the network, are capable of perform-
ing attacks without a resource limitation, and can control up to two of the three com-
munication participants to attack the remaining one(s).

2.1.4 Updated OAuth 2.0 Attacker Model

An updated version of the OAuth 2.0 attacker model is described in the “OAuth
Security Best Current Practice”-Draft [10]. It defines the attacker types A1-A5.
The OAuth communication participants must be protected against the first two
attacker types. Further, they should be protected against the remaining three
attacker types. The five attacker types can work together, mostly the web at-
tacker or the network attacker in combination with the remaining three attacker
types.

A1 - Web Attacker This attacker can control different network endpoints, such
as browsers and servers. The respective RO, AS and RS that function as communi-
cation participants in an OAuth flow and need to be protected, are excluded from
this. Instead, the web attackers can operate their own clients, ASs and RSs. They
can also function as an end-user by employing their credentials or obtained secrets,
such as authorization codes. Further, the A1 attacker can cause end-users to follow
malicious URIs, e.g., through phishing. Web Attackers can not manipulate messages
not intended for them.

A2 - Network Attacker This attacker has the capabilities of the web attacker
with additional total network control. Network attackers cannot break TLS but
eavesdrop, manipulate, spoof, and block messages.

A3 - Read Authorization Response This attacker can read authorization responses
but cannot change their contents (e.g., through a leak).
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A4 - Read Authorization Request The A4 attacker can read authorization requests
but not change their contents (e.g., through a leak).

A5 - Obtain Access Token This attacker can obtain access tokens, which can be
redeemed by themselves at an honest RS.

2.1.5 OAuth 2.1

OAuth 2.0 was published over a decade ago. Since 2012, plenty of extensions and best
practices were added, resulting in the confusing landscape of RFCs we have today.
To correctly and securely implement an OAuth 2.0 instance, one has to read around
ten different RFCs. Therefore, OAuth 2.1 [11] is currently under development. The
draft aims to simplify the framework by limiting decisions that had to be made
by developers before. OAuth 2.1 does not add any new extensions or features. It
unites the OAuth 2.0 Security Best Current Practice [10] and additional extensions,
such as the PKCE [17] in a single standard. According to Parecki [12], OAuth 2.1
mainly differs from the initial framework in the requirement of PKCE for all OAuth
clients using the code flow. Also, the removal of the implicit grant and the RO
password credentials grant due to security reasons is a difference. Additionally, the
redirect_uri values in the token and authorization requests must be compared,
using exact string matching. Moreover, bearer tokens cannot be used in query
strings of URIs, while refresh token have to be sender-constrained or one-time use
when issued for public clients [12].

2.2 OpenID Connect

OIDC is an authentication protocol that adds an identity layer on top of OAuth
2.0. The OpenID Foundation published the core specification in November of 2014
[7]. With an ID token, issued by the AS, the client can authenticate the user and
establish a login session or check for an existing session. With OIDC, SSO scenarios
can be realized.

The process of how a client obtains an ID token and an access token is called a flow.
OIDC technically is an authentication extension for OAuth that can be “activated”
by the client through sending the openid scope value in the authentication request.
The AS issues an ID token, after a successful authentication of the user, who grants
authorization. The client can then send the access token to the protected UserInfo
Endpoint at the AS to obtain additional identity information about the user, who
authorized the access. The client receives information about the AS, as the Endpoint
locations, through OIDC Discovery [8], while the AS can register the client through
Dynamic Client Registration [9].
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ID tokens differ much from access tokens since they are not exchanged for access to
protected resources but provide information about the end-user themselves. An ID
token is a signed JSON Web Token (JWT) [37] that contains claims identifying the
user. Additionally, the AS can first sign and then encrypt the ID tokens using JSON
Web Signatures (JWSs) [35] and JSON Web Encryption (JWE) [36], resulting in
a nested JWT. The OIDC core specification defines several required and optional
claims, but ID token can also include other, self-defined claims. The specification
requires the presence of the iss claim, which defines the issuer of the response
(AS). It also requires the sub claim, that identifies the end-user and the aud claim,
specifying the audience (client) the ID token is issued for. Further, the exp and the
iat claims are required, which specify the expiration time and the time the ID token
was issued in the first place. The nonce security claim is required, if the client sends
the nonce parameter in the authentication request. The AS includes the parameter
value as the claim value without changing it. In that, it functions as mitigation
against replay attacks since the client can check whether the nonce included in the
ID token is the same as the one it sent prior.

In OIDC, the authentication process is determined through different flows. As in
OAuth, a client requests a certain flow by defining a response_type in the au-
thorization request. OIDC supports three different flows, namely the authorization
code flow, the implicit flow and the newly introduced hybrid flow. The latter is a
combination of the first and the second flow.

2.2.1 Code Flow

The authorization code flow (response type code) works similarly as its OAuth
version. The OIDC authorization code flow is also supported in the FAPI. The
difference is that the client includes the openid scope in the authorization request
and the AS returns a ID token in the token response. The OIDC version of the
authorization code grant is marked red in Figure 2.1. Further, a client can include
the nonce parameter in the authentication request to mitigate replay attacks. Op-
tionally, the AS can include the at_hash claim, the access token hash value, in the
ID token.

2.2.2 Hybrid Flow

Another option to obtain access tokens and ID tokens is the hybrid flow, displayed
in Figure 2.3. The hybrid flow is also supported in the FAPI. OIDC defines three
different types of hybrid flows that can be requested using the response_type pa-
rameter (and the openid parameter) in the authorization request. In the code
id_token type, the AS replies with an authorization code and an ID token. After
redeeming the code, the AS issues an access token and an additional ID token. In
the code token type, the AS responds with an authorization code, but also with a
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User Agent

   response_type=code [token &| id_token], nonce, ...
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(Auth.&Token EP)
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8. Resource Request: access_token_2

3. Auth. Request
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4. User Authentication

5. Auth. Response (redirect to redirect_uri):

code, [access_token_1 &| id_token_1]

access_token_2, ..., id_token_2

Figure 2.3: OpenID Connect Hybrid Flow.

token. The code can be exchanged in the same way as before. In the code id_-
token token type, the response includes all three values. If the AS issues two ID
tokens during the flow, both tokens must have identical iss und sub claim values.
The ID token sent through the UA can hold less identity information to protect
the RO’s privacy. However, claims being present in both tokens should have the
same value. The nonce claim is generally required in the ID token when using
the hybrid flow, while the at_hash is only required with response type code id_-
token token, to bind the access token to the code. Similarly, the c_hash claim,
specifying the hash value of the authorization code, is required for the response
types code id_token and code id_token token, to bind the issued code to the ID
token.

2.2.3 Client-Initiated Backchannel Authentication (CIBA) Flow

In 2021, the OIDC CIBA Flow was published [54]. This authentication flow differs
from the initial flows in that the client can start it without user interaction. The
client is able to directly communicate with the AS, without redirection through the
UA. Direct communication is realized through the newly introduced Backchannel
Authentication Endpoint. With that the CIBA Flow does not change the general
functionality of OIDC. In a CIBA scenario, end-user authentication happens on
a so-called Authentication Device (AD), which often is a smartphone owned by
the user. Moreover, a Consumption Device (CD) is introduced, with which the
end-user can consume the service offered by the client. The client can own the
consumption device. The client can start the flow by sending a request to the
Backchannel Authentication Endpoint of the AS, which answers with a unique iden-
tifier of the authentication. After the AS authenticated the end-user, it issues the
tokens.
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Figure 2.4: CIBA Flows in different Modes. [54]

There are three different ways to transmit the tokens: Poll Mode, Ping Mode and
Push Mode. In the Poll mode, displayed in Figure 2.4a, the client sends requests to
the token endpoint, asking if the tokens are available yet. The AS either responds
with a token response or with a polling response, which does not contain the re-
quested tokens. In the Ping mode, displayed in Figure 2.4b, the AS sends a ping
callback to the client, stating that the tokens are available. The client then sends
a token request to the token endpoint to obtain the tokens. In the Push mode,
displayed in Figure 2.4c, the AS directly sends the tokens to the registered callback
URI of the client. It is also possible to use sender-constrained access token (e.g.,
MTLS) with the Push mode, binding them to key material which is presented at
the Backchannel Authentication Endpoint.
To show the support of the CIBA flow, ASs must publish the backchannel_token_-
delivery_modes_supported and the backchannel_authentication_endpoint AS
metadata parameters. The first one holds a list of the supported modes to obtain
the tokens (poll, ping, push), while the other parameter defines the URL of the
Backchannel Authentication Endpoint at the AS. The client has to set one of the
defined modes to obtain the tokens, either poll, ping, or the push mode with the
backchannel_token_delivery_mode parameter. If they want to use the ping or
push mode, clients also have to define the backchannel_notification_endpoint
parameter. Another security feature introduced in the CIBA specification is the user
code mechanism. In this mechanism, an end-user holds a secret user code, which
a client needs to start a flow at the AS. The user code prevents the unsolicited
starting of CIBA flows by malicious clients or users. To show support of this fea-
ture, the AS defines the backchannel_user_code_parameter_supported metadata
parameter.
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2.2.4 JWT Client Authentication

In OIDC [7], there are different ways defined to perform client authentication at
the token endpoint of the AS. The default method is the client_secret_basic,
where the client authenticates using HTTP Basic authentication with their received
client_secret. Other ways (mandatory in the FAPI profiles) include the client_-
secret_jwt and the private_key_jwt, in which the client proves possession of a
key, instead of directly sending the secret. Firstly, the client uses an HMAC SHA
algorithm with the client_secret as the shared key, creating a signed JSON Web
Token (JWT), which is then included in the token request. The AS can verify the
signature using the shared key. Latterly, the client has registered a public key and
uses the matching private key to sign a JWT, which is then included in the token
request. The AS verifies the signature using the preregistered public key. Both
signed JWTs have to include the following claims: iss, sub, aud, jti, and exp.
The claims provide security, since both iss and sub hold the client_id and the
aud claim specifies the audience, which is the token endpoint URI of the AS. Using
these claims prevents attacks where an attacker forces the client to authenticate to
a malicious token endpoint. The claims ensure that the signed JWT can not be
reused to authenticate at the honest endpoint. The jti prevents reuse of the JWT,
while the exp claim defines a time after which the JWT looses validity. The AS ties
the authorization code to the client_id, so that only the correct client can redeem
it at the token endpoint, by authenticating to the AS.

2.3 Extensions

Understanding the security measures mandated by the FAPI requires knowledge of
several extensions for OAuth 2.0 and OIDC. In the following, we will explain common
security extensions for OAuth 2.0 and OIDC through a standard authentication
flow. In Table 2.5, the explained security extensions and the thereby protected
messages are displayed. Additional information for each extension can be found in
Appendix A.

Authorization Request After the end-user initiates the authorization flow, the
client sends an authorization request. Since it is sent through the end-user’s UA,
the request can be manipulated. JWT-Secured Authorization Request (JAR)
[32] extends the OAuth 2.0 authorization framework, so that authorization request
parameters can be encoded in a JWT. Thus, authorization requests can be integrity
protected by signing the JWT with JWS and encrypted by using JWE. A more
detailed description of the JWT-Secured Authorization Request (JAR) extension
is given in section A.1. Another solution to protect the authorization request is
Pushed Authorization Request (PAR) [33]. With Pushed Authorization Re-
quest (PAR), clients can push the authorization request content to the AS. The
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Table 2.5: Extensions securing different requests and responses.
Message Extension

Authorization Request JAR, PAR, RAR

Authorization Response JARM, ID token as detached signature

Token Request PKCE, MTLS for client authentication

Token Response MTLS for token binding, DPoP

Resource Request MTLS for token binding, DPoP

Introspection Response Signed JWT introspection response

request is thereby not sent through the end-user’s UA. Pushing the authorization
request has various advantages, such as integrity and authenticity protection as well
as confidentiality. With PAR, more request data can be pushed than in a con-
ventional way since URLs have a length restriction. PAR also implements client
authentication at the AS, before any user interaction happens. A more detailed
description of the PAR extension is given in section A.2. Another extension for
the transmission of more data is Rich Authorization Request (RAR) [27]. It
introduces the new authorization request parameter authorization_details. This
parameter helps to translate a high demand for authorization data present in the
financial context. A more detailed description of the Rich Authorization Request
(RAR) extension is given in section A.3.

Authorization Response After the end-user AS receives the authorization request
and after successful user authentication, it answers with the authorization response.
This response is sent through the end-user’s UA to the client. As with the au-
thorization request, the response is not protected from manipulation. By design,
OIDC offers the possibility to protect authorization response values such as state.
If the hybrid flow is used with the response type code id_token, the ID token
can function as a detached signature. Response parameters or their hash values
can be included in the ID token sent from the authorization endpoint. Alterna-
tively, the JWT Secured Authorization Response Mode (JARM) [2] exten-
sion introduces a JWT-based mode, where the response parameters are encoded as
a JWT. JWTs enable the possibilities of signing and encrypting the authorization
response parameters. Further, it enables sender authentication and audience re-
striction. A more detailed description of the JWT Secured Authorization Response
Mode (JARM) extension is given in section A.4.

Token Request After the client receives the authorization response containing an
authorization code, it sends the token request. The token request includes the
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code to exchange it for tokens. If the authorization code leaks to an attacker, it
can use it to obtain tokens. In case of a confidential client, client authentication
is used to prohibit this, since the code is bound to the client ID. Thereby, Client
authentication performed on the transport layer is more secure than sharing secrets,
as specified in OAuth. Mutual TLS (MTLS) [31] provides this kind of client
authentication. A more detailed description of the Mutual TLS (MTLS) extension
is given in section A.6. If a public client is used, client authentication is not an
option. Therefore, Proof Key for Code Exchange (PKCE) [17] was created.
The measure binds the authorization request to the token request. Through the
PKCE parameters in the token request, the public client can prove that it has sent
the authorization request. A more detailed description of the PKCE extension is
given in section A.5.

Token Response If the authorization code is valid, the AS sends a token response,
that includes an access token and might include a refresh token and an ID token.
An attacker that obtains these tokens can redeem them at the RS since the ac-
cess token and the refresh token are bearer tokens. A secure alternative to bearer
tokens are sender-constrained tokens. Mutual TLS (MTLS) [31] can be used
for binding the token to the client it is issued for. Thereby, the client uses MTLS
for connecting to the token endpoint of the AS, which is then able to bind the
issued token to the client’s certificate. A more detailed description of the MTLS
extension is given in section A.6. Alternatively, Demonstration of Proof of
Possession (DPoP) [34] can be used. This extension describes token binding on
the application layer. With Demonstration of Proof of Possession (DPoP), public
and confidential clients can prove possession of a private key to redeem sender-
constrained access tokens or refresh tokens. The standardization introduces the
DPoP proof, which is a client-signed JWT, attached to the token request as the
DPoP HTTP header. A more detailed description of the DPoP extension is given in
section A.7.

Resource Request After receiving the token, the client redeems it at the RS using
the resource request. Attackers that obtain the access token can redeem it themselves
if the token is not sender-constrained. For token binding, MTLS (see section A.6)
or DPoP (see section A.7) can be used.

Introspection Response With token introspection, the validity of a received to-
ken can be verified, or additional information regarding the token can be obtained
at the respective token introspection endpoint at the AS. Token introspection re-
sponses are not integrity protected and can be manipulated. Through signed JWT
introspection responses [55] , they can not be manipulated anymore. A more
detailed description of the JWT introspection response extension is given in sec-
tion A.8.



3 The Financial-Grade API (FAPI)

The financial-grade API (FAPI) is a security profile for OAuth, designed as an
interoperable solution for Open Banking scenarios. It aims to fit the high need
for security and regulatory aspects that core OAuth can not offer due to it being
a framework. It was developed as a reaction to the European Payment Service
Directive 2 (PSD2), published in 2015 [67]. The profile offers a secure and efficient
alternative to screenscraping. Despite its origin in the financial context the FAPI
profiles are also useful in other scenarios with a high demand for security. For
example, in the e-health environment, the FAPI can enable secure access to and
interaction with user accounts.

3.1 FAPI 1.0

FAPI 1.0 consists of two profiles: the baseline and the advanced profile. The fi-
nal Financial-grade API 1.0 security profiles [22] [23] were published in March 2021
by the FAPI working group. Prior, the FAPI second implementer’s drafts [3] [4]
were published in October 2018. Conformance test suites are available to ensure
the correct implementation of the standard. Implementations successfully passing
the tests are listed as certified FAPI ASs and clients. The specification combines
existing OIDC security features with best practices and other security recommen-
dations to define two individual profiles, which are designed for different security
levels.

The baseline profile [22] is developed for read-only access to APIs with a moder-
ate risk, holding sensitive data. Therefore, security measures such as PKCE [17]
(described in section A.5) or client authentication are mandatory. Further, the
enforcement of security best practices such as the use of a short token lifetime or pre-
registered redirect URIs are enforced by the FAPI regulations.

On the other hand, the advanced profile [23] is intended to protect read and write ac-
cess to APIs, bearing a high risk. Additional measures such as signing authorization
requests and responses and using sender-constrained access tokens are applied on
top of the baseline requirements to ensure high security.

Further specifications, developed in the context of FAPI include the “FAPI 1.0 —
JWT Secured Authorization Response Mode for OAuth 2.0” (JARM) [2] (described
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in section A.4), and the “Financial-grade API: Client Initiated Backchannel Authen-
tication Profile” (CIBA) [53]. Since the latter is based on the specifications given
in the FAPI second implementer’s drafts, the differences between the drafts and the
final profile versions are explained as well.

3.1.1 Part 1: Baseline

The baseline profile aims to protect (financial) APIs bearing a moderate risk [22].
It requires the implementation of the following standards “The OAuth 2.0 Autho-
rization Framework” [13] (described in section 2.1), “The OAuth 2.0 Authorization
Framework: Bearer Token Usage” [14], the “Proof Key for Code Exchange by OAuth
Public Clients” [17] (described in section A.5) and the “OpenID Connect Core 1.0
incorporating errata set 1” [7] (described in section 2.2).

Use of Strong Cryptography The profile requires the use of strong cryptographic
parameters to mitigate cryptographic attacks. Thereby, security can be ensured for
a longer time, even with growing computation power. To fulfill this requirement,
ASs must issue a client_secret to enable cryptographically strong keys due to
sufficiently high entropy when using symmetric cryptography. Further, confidential
clients must verify that their received client_secret is at least 128 bits long, in a
symmetric cryptography context. Further, the AS and confidential clients shall only
deal with > 2048 bit long keys for RSA algorithms and > 160 bit long keys in an
elliptic curve context. ASs must mitigate credentials-guessing attacks by only issu-
ing access tokens, (optional refresh tokens,) and authorization codes with sufficient
entropy. Therefore, the attackers success probability shall be ≤ 2(−128) and ought
to be ≤ 2(−160).

Safe Redirect URIs Redirect URIs are a popular attack vector. An attack on
redirect URIs is described in subsection 6.2.11. Hence, the AS must enforce the
pre-registration of redirect URIs and the use of the https scheme. Furthermore,
the AS must reject authorization requests without the redirect_uri parameter
or with redirect_uri values that do not match any of the pre-registered redirect
URIs.

Public and confidential clients must utilize individual redirect URIs for each autho-
rization server they communicate with. Further, clients must store the redirect URI
value in the end-user’s session to compare it with the receiving address of the autho-
rization response. If they differ, the client must stop the flow.
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Client Authentication ASs must always perform client authentication when deal-
ing with confidential clients to bind the authorization code to them. This technique
ensures that only the client bound to the code can exchange it for the respective
tokens at the AS. For this purpose, they shall either use MTLS [31] (described in
section A.6) for OAuth Client Authentication or one of two authentication methods
specified in the OIDC standard (described in subsection 2.2.4). In both the client_-
secret_jwt and the private_key_jwt method, the client creates a JWT. In the first
method, the client calculates a MAC using its client secret (symmetric key), while in
the latter, the client signs the JWT utilizing its private key (which matches the pre-
viously registered public key). Each way, the client proves possession of a key instead
of directly sending their client credentials to the AS. Moreover, the AS must return
an invalid_client error, in case the iss and sub claim values in the JWT differ,
since they both need to contain the same client_id.

Similary to the AS, a confidential client must also either support MTLS [31] or
one of the named JWT-based authentication methods to authenticate at the token
endpoint.

Secure Ways to Deal with End-Users One goal of the Open Banking movement
and the PSD2 is to enable the end-user to control their privacy and security settings.
The FAPI profile also aims to provide a certain level of transparency and clarity to
the user. Consequently, the AS requires a reliable and appropriate level of user
authentication. Specific user consent to the requested scopes is mandatory if they
have not been approved before. Further, the AS should clarify authorization details
to the user, especially whether they agree to a long-term grant, meaning long-term
access to their resources. The AS should also offer a revocation mechanism enabling
the end-user to revoke their consent. Consent revocation should result in the issued
refresh tokens and access tokens becoming invalid.

Enforcement of Security Best Practices The FAPI baseline profile also requires
the adherence to particular security best practices. These basic configurations
already provide a higher level of security without additional extensions. FAPI-
compliant ASs have to support confidential clients and should support public clients
as well. The AS must not accept previously used authorization codes and should
only issue bearer tokens with a lifetime of under 10 minutes or sender-constrained
ones. It is recommended to use refresh tokens instead of long-lived access tokens.
Both measures reduce the attack surface for replay attacks. Generally, access to-
kens should have a shorter lifetime than refresh tokens. Further, the AS has to
return token responses, conforming to the OAuth Authorization Framework [13].
The AS must return a list of authorized scopes together with the access token if
an authorization request was sent through the front channel. Since the request is
not integrity protected when sent through the front channel, the AS clarifies to
the client whether the scopes were manipulated. Moreover, the AS has to require
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the use of PKCE, configured to use S256 as the code_challenge_method. The
server also has to support OIDC discovery [8] and can support OAuth authoriza-
tion server metadata [18]. The AS is not allowed to distribute discovery metadata
differently.

Both confidential and public client must support PKCE with the S256 code chal-
lenge method. Clients also have to implement a working Cross-Site Request Forgery
(CSRF) protection and ensure that the (in the token response) received scope
matches the scope or a subset of it that is specified in the authorization request.
Additionally, clients are only allowed to make use of the AS metadata published via
the metadata document at the AS’s well-known endpoints. Therefore, they should
act compliantly with either OIDC Discovery [8] or OAuth Authorization Metadata
(RFC8414) [18].

Optional Support of OpenID Connect Further, in case the client sends the openid
scope in the authorization request, the AS must require the presence of the nonce
parameter in the authentication request. This parameter aims to mitigate replay at-
tacks. If the openid scope is not requested, the AS must require the state parameter
instead, which is used to protect against CSRF attacks.

The client has to include the openid scope and the nonce parameter in the autho-
rization request, if user authentication is wanted. If not, the client must include the
state parameter instead.

Ensurance of Secure Transmissions Every interaction between any of the commu-
nication participants must be encrypted with TLS. Thereby, participants have to be
compliant with the recommendations given in the BCP195 [69]. They must only use
TLS version 1.2 or later versions and perform TLS server certificate checks. Further-
more, it is recommended that all endpoints employ DNSSEC and that endpoints used
by web browsers can assure that connections cannot be downgraded.

Communication Between Client and RS RSs must support the HTTP GET
method and should also support Cross Origin Source Sharing (CORS) or different
methods that enable access to the endpoints for JavaScript clients, if the RS decides
to. In this context, RFC6819 (OAuth 2.0 Threat Model and Security Considerations)
[13] should be considered before allowing JavaScript clients.

The RS must only accept access tokens sent in an HTTP header and must not accept
transmission via query parameters. Hence, clients must send the access token via
an HTTP header.

The RS must only return the respective resources, which are precisely defined by the
associated entity and the granted scopes combined. The resource response must be
UTF-8 encoded. Regarding the HTTP headers included in the response, the RS must
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use the Content-Type Header Content-Type: application/json (if applicable)
and the HTTP Date header to transmit the server date. Additionally, it is required
to include the x-fapi-interaction-id response header. This header’s value must
be the same as the one received in the client request, or a UUID if the value was
not provided. The x-fapi-interaction-id aims to track the interaction between
client and RS, therefore the value must be logged by the RS. Furthermore, the RS
must not dismiss requests containing a x-fapi-customer-ip-address header that
holds a valid IPv4 or IPv6 address.

Clients are allowed to include the x-fapi-auth-date header in the resource request
to specify the last time when a customer logged in at the client. They are also
permitted to transmit the IP address of the customer via the x-fapi-customer-ip-
address header. Further, clients may send a UUID as the x-fapi-interaction-id
request header to support the RS’s logging process.

Validation of the access token The RS must ensure that the received access token
neither expires, nor has been revoked. The RS also needs to check whether the
associated scopes grant access to the resources the server is protecting. Further, it
needs to identify the entity linked to the access token.

Miscellaneous Requirements and Recommendations Generally, it is recommended
to use certified implementations of the FAPI profile or check compliance of own im-
plementations by using the provided certification test suite [1]. Additionally, strict
access control to the logs is recommended as well. If a higher security level is needed,
especially against the failure of integrity protection, it should be considered to apply
the FAPI Security Profile 1.0-Part 2: Advanced.

Further, native apps must follow the best security practices for native apps [57] in
BCP212 and must neither support Private-Use URI Scheme Redirection, nor Loop-
back Interface Redirection. Native apps are only allowed to support Claimed HTTPS
Scheme URI Redirection. In case one AS deployment has to provide individual au-
thorization endpoints for a variety of “brands”, an individual issuer must be used
for each of them.

3.1.2 Part 2: Advanced

The advanced profile aims to protect (financial) APIs bearing a high risk, e.g., ini-
tiation of transactions [23]. Therefore, the profiles aim to provide non-repudiation
and sender-constrained access tokens. Non-repudiation can be realized through sign-
ing the authorization request and response. It requires the implementation of the
following standards “The OAuth 2.0 Authorization Framework” [13] (described in
section 2.1), “The OAuth 2.0 Authorization Framework: Bearer Token Usage” [14],
the “Proof Key for Code Exchange by OAuth Public Clients” [17] (described in
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section A.5) and the “OpenID Connect Core 1.0 incorporating errata set 1” [7]
(described in section 2.2).

The advanced profile generally builds upon the baseline profile but adds additional
security measures. Further, PKCE is not required, and some specified provisions
override given ones. In the advanced profile, only confidential clients are supported.
Additionally, either the Code Flow (described in subsection 2.1.1) with the JARM or
the Hybrid Flow (described in subsection 2.2.2) with ID token as detached signatures
can be used.

Client Authentication The AS must authenticate the client either using MTLS
[31] (described in section A.6) with the tls_client_auth or the self_signed_-
tls_client_auth, or using the private_key_jwt method, specified in the OIDC
standard. In contrast to the baseline profile the symmetric client_secret_jwt
authentication method is not supported.

Sender-Constrained access token ASs must only issue sender-constrained access
tokens, supporting MTLS (described in section A.6). Confidential clients must also
support MTLS as a mechanism for sender-constraining. RSs must not accept bearer
tokens, but only support MTLS for sender-constrained access token. Thereby, they
must be compliant with the requirements in RFC8705 [31].

Secure Ways to Deal with End-User The confidential client must assure that the
AS provides an appropriate level of user authentication.

Protecting the Authorization Request - JWT-Secured Authorization Request
(JAR) The advanced profile requires securing the authorization request by employ-
ing JAR [32] (described in section A.1) to provide non-repudiation. Therefore, the
AS requires a JWT request object, which is signed with a JWS. The request object
must be either passed by value (request parameter) or by reference (request_ob-
ject parameter). Further, the request object must contain the exp claim, specifying
a point in time ≤ 60 minutes after the nbf claim, and the aud claim, holding (an
array of) the AS issuer identifier URL. The request object must also contain an nbf
claim specifying a point in time ≤ 60 minutes in the past.

The confidential client must send either the request or the request_uri parame-
ter in the authorization request. Additionally, confidential clients must include all
parameters in the request object signed for the authorization request. If PAR is not
used, the confidential client has to include the response_type, the client_id and
the scope parameter/value pairs outside of the request object. That is necessary
due to the OAuth 2.0 syntax. These values have to match the ones stated in the
request object. If PAR is used, the client only has to send the client_id to the
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authorization endpoint. In the request object, the confidential client has to inte-
grate the aud, the exp, and the nbf claim, similarly to the requirements given for
the AS.

Protecting the Authorization Response Another measure to provide non-repudiation
is integrity protecting the authorization response. For this purpose, the advanced
profile specifies two different ways: either using JARM [2] (described in section A.4)
or utilizing the ID token as a detached signature.

In the case of using JARM [2], the response type has to be code with the response
mode being jwt. ASs have to use JWT-secured authorization responses as stated
in the response encoding paragraph of the standard [2]. Further, confidential clients
have to validate the authorization response according to the processing rules given
in the specification [2].

Another possibility is to use the ID token as a detached signature. The ID token
can be utilized in a way that is not related to the identity of the end-user. ID tokens
include the issuer identifier of the AS and are signed by it. The ID token can include
an ephemeral subject identifier. Hashes of unprotected response parameters, such as
code or state are included in the token and therefore signed by the AS. The hash of
the code is called c_hash, while the hash value of the state is named s_hash. When
using the ID token as a detached signature, the response type code id_token has
to be used. The AS further must support OIDC and signed ID tokens. It is also
recommended, that it supports signed and encrypted ID tokens. ID tokens have
to be returned as detached signatures and must include the s_hash value. On the
other hand, it is not ought to return any sensitive PII in the token. If that cannot be
avoided, the ID token should be additionally encrypted.

The confidential client has to behave similarly: It must include the openid scope,
require a JWS signed ID token and support signed and encrypted ID token. Further,
confidential clients have to check that the authorization response was not manipu-
lated by validating the ID token as the detached signature. They also must verify
the s_hash by calculating the hash of the state value send in the authorization
request and comparing both.

Pushed Authorization Endpoint (PAR) The AS is permitted to support the pushed
authroization request endpoint as stated in RFC9126 [33] (described in section A.2).
If the AS decides to support pushed authorization requests, it must employ PKCE
with the S256 code challenge method.

Confidential clients also have to employ PKCE [17] with the S256 code challenge
method when utilizing pushed authorization requests. Furthermore, they must
transmit the client_id parameter-value pair to the authorization endpoint.
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Enforcement of Security Best Practices The AS must exclusively process the
parameters given in the signed request object, either transmitted via the request
or the request_uri parameter. It is recommended that the JWKS URI endpoint
is used by the AS to publish public keys.

The confidential client also has to utilize the JWKS URI endpoint or the jwks param-
eter as specified in the Dynamic Client Registration Protocol [16].

Further, protected actions must only be executed if a valid access token is present.
Another recommendation for the advanced profile is not to use the x5u and jku
JOSE headers.

Ensurance of Secure Transmissions TLS versions below 1.3 must be treated care-
fully, only four cipher suites are allowed: TLS_ECDHE_RSA_WITH_AES_128_GCM_-
SHA256, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, TLS_DHE_RSA_WITH_AES_128_-
GCM_SHA256 and TLS_DHE_RSA_WITH_AES_256_GCM_SHA384. The latter ones shall
only be used with key lengths ≥ 2048 bits. Additional cipher suites, which are ap-
proved by the best current practices for the use of TLS and DNS [69], can be used
for the authorization endpoint to ensure a higher level of interoperability. Further,
all endpoints ought to use DNSSEC, and the jwks_uri endpoint must be served
over TLS.

Strong Cryptography ASs and clients must use PS256 or ES256 algorithms for
JWS. Algorithms using RSASSA-PKCS1-v1_5 are not recommended and using none
is forbidden. It is also forbidden to use the RSA1_5 algorithm for clients and ASs
performing JWE. Avoiding the same kid for more than one key in a JSON Web
Key (JWK) set is recommended. If this is not possible, other JWK attributes, as
kty, use or alg, must be used as additional identification to select the suitable
verification key.

3.1.3 FAPI Second Implementer’s Draft

Both FAPI profiles originate in the second implementer’s drafts [3] [4]. These drafts
are referenced by the CIBA FAPI profile (subsection 3.1.4). Further, the client
and AS setup in chapter 5 are certified for the draft of the advanced FAPI profile.
Therefore, it is essential to understand the differences between the drafts and their
final version.

The read-only profile [3] is renamed to the baseline profile, while the read-write
profile is now called the advanced profile. In the old draft version, the AS was only
recommended to reject previously used authorization codes, in the read-only profile.
Additionally, there was no recommendation for the access token lifetime present
in the draft. Similarly, ASs did not need to support OpenID discovery or OAuth
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authorization server metadata for metadata distribution. Clients did not need to use
metadata distributed through these explicit mechanisms. In the draft, public clients
had alternatives to using PKCE. Further, they were not obliged to check the received
scopes present in the token response. In Contrast to the final version, the RS was
required to include the charset in the Content-type header. Moreover, there were
less thorough/comprehensive TLS recommendations, meaning that the draft did not
recommend TLS stripping attack prevention measures or the use of DNSSEC. Minor
changes primarily include clarifications, such as rejecting requests lacking the state
or nonce values, and recommendations [38].

In the read-write profile [4], request objects which do not include a nbf claim were
accepted. An exp claim that states a lifetime of more than 60 minutes was also
allowed. Further, using PAR without PKCE parameters was accepted, as well as
JWKs including keys with similar kids. Additionally, public clients were not ex-
plicitly forbidden, as well as the hybrid flow with the response type code id_token
token. In the draft, JARM was only an addition to the use of OIDC while it is an al-
ternative in the final version. Furthermore, the use of OAuth Token Binding [5] was
possible for sender-constraining access tokens. Other minor changes include clarifi-
cations and recommendations regarding wording and cryptographic considerations
[38].

3.1.4 Client Initiated Backchannel Authentication Profile

The second draft of the FAPI CIBA profile [53] was published in 2019. This se-
cure profile for CIBA can be used in scenarios in which the client needs to initiate
the flow. An example of such a scenario is the user authorization at a "point of
sale" terminal in a shop. In that case, user consent is granted through an au-
thentication device while the client initiates the flow from the consumption device.
The CIBA profile builds upon the FAPI 1.0 baseline and advanced profile as well
as the OIDC CIBA flow (described in subsection 2.2.3). All communication par-
ticipants (ASs, only confidential clients and RSs) have to follow the requirements
stated in both baseline and advanced profiles. Furthermore, the provisions regard-
ing the assurance of secure transmissions and strong cryptography given in the
advanced profile apply. Additional requirements are specified in the following para-
graphs.

CIBA-Specific Security Requirements Since the CIBA flow specifies a new end-
point and three different methods for obtaining access tokens, additional require-
ments are specified. First, the AS must not support CIBA push mode, since the
access token would received from the token endpoint. Instead, it must support
the poll mode and can support the ping mode if intended. Second, the AS has to
support both unsigned and signed authentication requests to the Backchannel Au-
thentication Endpoint, compliant with the CIBA specification [54]. A new extension
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to the authentication request, presented in this specification, is the request_con-
text claim. This optional claim is a JSON object and can be included in the au-
thentication request to share additional information with threat detection systems.
The JSON object can hold information such as the geolocation of the consump-
tion device. The AS can require the presence of the claim in the authentication
request.

Confidential clients are advised to only send signed authentication requests to the
Backchannel Authentication Endpoint.

Secure Ways to Deal with the End-User The specification further states that the
AS must ensure an appropriate level of user authentication, matching the granted
operations. Confidential clients have to verify that the AS has performed the ap-
propriate level of user authentication.

Enforcement of Security Best Practices The AS must require the existence of a
unique authorization context in the authorization request or a binding_message in
the authentication request. Additionally, it is recommended for the AS that it does
not make use of the login_hint or the login_hint_token for transmitting “intent
ids” or other authorization metadata. Further provisions are that the AS must
return the acr claim in the ID token, if supported and if requested by the client.
Moreover, the AS must only accept signed authentication requests with nbf and exp
claims limiting the request lifetime to ≤ 60 minutes.

Confidential clients must further require appropriate authorization context in an
authorization request or include a binding_message in the authentication request.
Furthermore, the confidential client must not send x-fapi-customer-ip-address
and x-fapi-auth-date headers. However, it is recommended to send metadata
about the consumption device, when the device is not in control of the client.

Several additional security measures are specified to ensure that authentication ses-
sions cannot be started without the user’s knowledge. One of these measures rec-
ommends that the login_hint has nonce properties and that ASs can accept the
id_token_hint alternatively. In the latter case, the client needs to store the received
ID token for later use. Hence, the identification mechanism for obtaining the token
should be appropriate for the used channel. In addition, the specified user_code
mechanism can be used.

3.2 FAPI 2.0

The first ideas for the financial-grade API security profile 2.0 [30] [28] were pub-
lished in February of 2020. The second version of the FAPI standardization aims
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to provide even more interoperability. Interoperability is achieved by limiting the
options. Other goals of FAPI 2.0 include providing better non-repudiation while
simplifying the development. Therefore, the FAPI working group works on an un-
derlying attacker model [29] and takes learnings from practice into consideration.
Two profiles belong to the second FAPI specification: the baseline profile [30], which
is even more secure than the FAPI 1.0 advanced profile, and the new advanced pro-
file [28], which improves non-repudiation through signing all relevant requests and
responses. However, the FAPI 2.0 profiles do not build upon FAPI 1.0, but rather
define an independent FAPI version.

3.2.1 Attacker Model

The financial-grade API 2.0 specifies an attacker model [29]. Since the FAPI promises
a high level of security, it is necessary to define against which threats the profiles
protect. Hence, several attackers, security goals, and non-repudiation requirements
are modeled. The model forms a basis for the selection of suitable security measures.
The goal of the attacker model is to facilitate future security analysis. It can not
provide security guarantees. An analysis that provides the basis for this model was
conducted in 2019 by Fett et al. [59]. The paper describes a “reverse engineered”
attacker model of FAPI 1.0. The model defines three security goals: authorization,
authentication, and session integrity.

Authorization No attacker has any chance to access the end-user’s resources and
obtain or use the RO access token for this purpose.

Authentication There is no possibility for an attacker to log in as the user at a
client or obtain and use an ID token to do so.

Session integrity Session integrity means that a user logs in as themselves and
accesses their own resources. Through CSRF or session swapping attacks, session
integrity can be broken. Additionally, an attacker can force the user to log in under
the attacker’s identity or cause the user to access the attacker’s resources. The
latter case describes the session integrity goal regarding authorization. The first
one represents the authentication session integrity goal since attackers should not
be able to log in users under a different identity.

The specification also models eight different attacker types that it aims to protect
against. The model assumes that TLS, JWKS, browsers, and endpoints all function
correctly since their security is out of scope.
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A1 - Web Attacker The Web attacker can send and receive messages. They can
also participate in flows. They can use different standard tools and tamper messages
at their own endpoints. Further, they can send links to honest users who visit
them.

A1a - Web Attacker (participating as AS) A1a is a web attacker who additionally
participates as a malicious AS. Hence, they can reuse messages from honest AS and
redirect users to honest ASs endpoints.

A2 - Network Attacker Network attackers can control the entire network, meaning
they can intercept, block and tamper with messages addressed to other parties in
the network.

A3a - Read Authorization Request A3a is one of two attackers at the authorization
endpoint. This type of attacker is a web attacker. The A3a attacker can read
authorization requests, which are sent in the front channel. These can be leaked by
the browser history, for example.

A3b - Read Authorization Response A3b is the second attacker at the authoriza-
tion endpoint. They are a web attacker, able to read the authorization response,
which can be leaked by web browser logs, for example.

A5 - Read and Tamper with Token Requests and Responses This type of at-
tacker sits at the token endpoint and can read and tamper with token requests
and responses since it can impersonate the token endpoint of the honest AS to the
client.

A7 - Read Resource Requests and Responses A7 is one of the attackers sitting
at the RS. This type has the same abilities as the web attacker but reads resource re-
quests and responses, e.g., through reading TLS interception proxy logs.

A8 - Tamper with Resource Responses A8 is the other attacker at the RS. It has
the same abilities as A7 with the additional capability of manipulating responses,
e.g., through a compromised reverse proxy.

In addition to the different attacker types defined in this model, the additional non-
repudiation requirements NR1 - NR9 are given. These requirements are necessary to
ensure that a communication party cannot deny it has sent a specific request. That
is of special interest in a financial context since payment initiations must be traceable
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to one specific person or party. Messages that need protection, such as application-
level signatures to provide non-repudiation, include pushed authorization requests
(NR1) and responses to pushed authorization requests (NR2). The requirements also
include authorization requests (NR3) and responses (NR4), sent through the front
channel, as well as ID token contents (NR5). Furthermore, introspection responses
(NR6), user info responses (NR7), resource requests (NR8), and responses (NR9)
are affected.

3.2.2 Baseline Profile

The baseline profile [30] aims to protect (financial) APIs bearing a moderate risk.
It requires the implementation of the following standards “The OAuth 2.0 Autho-
rization Framework” [13] (described in section 2.1), “The OAuth 2.0 Authorization
Framework: Bearer Token Usage” [14], the “Proof Key for Code Exchange by OAuth
Public Clients”[17] (described in section A.5) and the “OpenID Connect Core 1.0
incorporating errata set 1” (described in section 2.2) [7].

Ensurance of Secure Transmission All endpoints provided by any of the protocol
participants must be TLS protected and should use DNSSEC. For this reason, TLS
1.2 or later versions must be used. Additionally, communication participants have
to adhere to the recommendations stated in [69]. When TLS 1.2 is used, only four
defined cipher suites are allowed, and two of them must have specified key lengths.
TLS certificate checks are mandatory. Furthermore, endpoints that are used by
web browsers must prevent the downgrading of TLS connections, e.g., by utilizing
preloaded HTTP strict transport security policies.

Strong Cryptography All protocol participants must behave compliant with the
JWT best current practices [39] when dealing with JWTs. The best practices recom-
mend avoiding RSA-PKCS1 v1.5 algorithms used for encryption and implementing
the Elliptic Curve Digital Signature Algorithm (ECDSA) in a deterministic way, as
specified in RFC6979 [40]. These recommendations must be followed. Especially,
the none algorithm must not be used. Further, the second version of the FAPI en-
forces, the use of either PS256 or ES256 algorithms. All RSA keys must be at least
2048 bits long, while elliptic curve keys must be at least 160 bits long. To prevent an
attacker from guessing credentials, access tokens, refresh tokens, and authorization
codes must have at least 128 bits of entropy.

Pushed Authorization Endpoint (PAR) In contrast to FAPI 1.0, Pushed Autho-
rization Requests [33] (described in section A.2) are no longer optional, but re-
quired. Thus, ASs must only support client-authenticated PARs and reject com-
mon authorization requests or PARs sent without client authentication. Further,
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ASs must only accept PARs that include the redirect_uri parameter. When
issuing the request_uri, the servers must include expires_in values that are
between 5 and 600 seconds. Clients have to use PAR to meet the AS’s require-
ments.

Rich Authorization Requests (RAR) New to the FAPI cosmos is the Rich Au-
thorization Request [27] (described in section A.3), which introduces the autho-
rization_details parameter in the authorization request. This parameter allows
communicating more details about the requested resource access. Especially in a
financial context, this can be very helpful to transmit payment initiation details,
such as the names of sender and receiver, their IBANs, the amount of money, the
time, and currency, for example. Hence, ASs must support RAR and with that the
authorization_details parameter.

Sender-Constrained access token In the second version of the FAPI, there are
two ways to realize sender-constrained access tokens: MTLS [31] (described in sec-
tion A.6) and DPoP [34] (described in section A.7). The AS must only issue access
tokens using one of the two sender-constraining methods. Clients and RSs also have
to support at least one of the methods.

Client Authentication As in FAPI 1.0, MTLS [31] and private_key_jwt are sup-
ported methods for client authentication. ASs have to authenticate clients, either
using MTLS or using private_key_jwt. Clients need to authenticate using one of
these methods. When the latter method is used, the client must include the AS’s is-
suer identifier as a string in the aud claim sent in the client authentication assertions.
The AS then must accept the received claim value.

Redirection The AS must require the redirect_uri parameter in the pushed au-
thorization request. Redirect URIs must not use the “http” scheme since the AS
must only transmit authorization responses via encrypted connections. One excep-
tion exists for native clients using Loopback Interface Redirection. Further, when
the AS redirects requests, including user credentials, it must not use the HTTP
status code 307 (temporary redirect). When redirecting the user agent, it is recom-
mended to use the HTTP status code 303. ASs and clients must not expose open
redirectors.

Enforcement of Security Best Practices Additional security measures that the
AS must fulfill include the distribution of discovery metadata with the metadata
document, as specified in [18]. Further, ASs must support the authorization code
grant but must not accept requests sent in the resource owner password credentials
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grant, the implicit grant, or the hybrid flow. ASs have to support confidential
clients and enforce PKCE with the S265 code challenge method. Moreover, the
AS must include an iss parameter in the authorization response to prevent mixup
attacks. Authorization codes that have been used before must be rejected by the
AS.

Clients also must use the authorization code grant and PKCE with the S256 code
challenge method. The iss parameter sent in the authorization response must be
checked by the client as stated in [42]. In cases, where MTLS is either used as a
authentication method or a sender-constraining mechanism, clients must utilize the
mtls_endpoint_aliases metadata, as specified in [31].

Further, ASs must not use refresh token rotation when the client has not received the
new refresh token response. However, it can be used in cases where resending the re-
quest, which includes the last valid refresh token, succeeds.

Communication Between RS and Client RSs must only accept access tokens sent
in the HTTP header, but not in query parameters. Therefore, clients must transmit
access tokens in the HTTP header. Further, it must solely return resources identified
by the combination of entity and scope, stated with the access token. Additionally,
the RS must identify the respective entity.

Validation of access token When receiving resource requests, RSs must verify the
access tokens, focussing on validity, integrity, expiration, revocation, and the scopes.
Regarding the scopes, the RS must check that they and the included authoriza-
tion_details [27] grant access to the resources the RS represents.

3.2.3 Advanced Profile

The advanced profile [28] aims to protect (financial) APIs bearing a higher risk
by providing additional non-repudiation and other means of protection against the
modeled attacker. The Advanced profile builds upon and extends the baseline
profile, meaning that all baseline specifications apply to the advanced specifica-
tion. The high level of non-repudiation can be realized through signing the au-
thorization request and response by using JAR [32] (described in section A.1) and
JARM [2] (described in section A.4). Additionally, introspection responses can be
signed.

The advanced profile requires the implementation of the following standards “The
OAuth 2.0 Authorization Framework” [13] (described in section 2.1), “The OAuth
2.0 Authorization Framework: Bearer Token Usage” [14], the “Proof Key for Code
Exchange by OAuth Public Clients” [17] (described in section A.5), the “OpenID
Connect Core 1.0 incorporating errata set 1” [7] (described in section 2.2) and the
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“OAuth 2.0 Token Introspection” [41]. Since the draft is in an early stage of develop-
ment, it is subject to change, and open questions remain.

Protection of the Authorization Request - JWT-Secured Authorization Request
(JAR) A JWT-Secured Authorization Request [32] is used to ensure non-repudiation
of the authorization request. For this purpose, the AS has to support JAR and with
that accept signed request objects at the PAR endpoint. The client has to sign re-
quest objects, as specified in the JAR specification [32].

Protecting the Authorization Response The JWT Secured Authorization Re-
sponse Mode (JARM) [2] is used to prevent tampering with the authorization
response. In this context, the AS must support JARM. Clients have to check
that authorization responses are protected with either JARM or ID tokens as de-
tached signatures and verify the respective signatures. Since the FAPI 2.0 ad-
vanced profile is still a draft, this requirement might change to solely supporting
JARM.

Securing Token Introspection Responses JWT secured token introspection re-
sponses [55] are used to provide a higher assurance that the responses were issued
by a respective AS. ASs can but are not obliged to provide token introspection.
If they provide token introspection, they have to sign the introspection responses,
conforming to RFC7662 [41]. Clients that make use of the mechanism must request
signed and conforming token introspection responses.

Open Questions At this point, it remains an open question how to protect the
communication involving the RS, meaning which mechanisms can/should be used
to sign resource requests and responses.



4 (Tabular) Comparison of Security
Features

The FAPI working group claims that the FAPI is a “highly secured OAuth profile”
[22]. The four FAPI profiles are compared to OIDC [7], OAuth 2.0 [13] and 2.1 [11]
to understand how this statement originated. The following (tabular) comparison
presents an overview of the applied configurations. All examined standards differ in
their attacker models (see subsection 2.1.3, 2.1.4, and 3.2.1) and in the (security)
features provided. Further, it is noticeable that the security demand rises over time,
resulting in the creation and application of a variety of security extensions covering
new security vulnerabilities. The comparison shows a broad standardization scope
in the FAPI profiles, as well as many similarities between OAuth 2.1 and the FAPI.
Lastly, the FAPI CIBA profile [53] is compared to the OIDC CIBA specification [54]
and the OAuth 2.0 device authorization grant [19].

4.1 Methodology

We performed a comparison of the supported and required features to answer the
question of whether the FAPI profiles provide security improvements compared to
the classic OAuth and OIDC flows. The tabular comparison provides a detailed
overview of the specified security features of the different profiles. While this might
be helpful as a reference, it offers little information about the overall security of the
profile on hand. Multiple features in one profile can be replaced by a single feature
in a newer profile while providing a similar level of security. A security evaluation
of the FAPI compared to other protocol specifications can be found in chapter 7.
The tables do not claim to be complete and are subject to change since FAPI 2.0 is
still under development. The tables were assembled by mostly incorporating security
features and configurations specified in the four FAPI profiles. Then, we verified
whether and how these aspects were referenced in the other three protocols, namely
OAuth 2.0, OAuth 2.1, and OIDC. Thereby, we added suitable security measures
to the table, e.g., additional client authentication methods, stated in the none-
FAPI profiles. Finally, the features were sorted into different categories, providing
a better overview. Furthermore, one has to consider that certain features are not
supported in some protocols as they were not yet invented. An example for this is
the term “credentialed clients” which is introduced in the freshly published OAuth
2.1 draft [11]. Moreover, the protocols were designed for different use cases: OAuth
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is designed for authorization, while OIDC is created for authentication, resulting in
OAuth not supporting ID tokens. OAuth and the FAPI profiles also differ in their
attacker models, resulting in “missing” security measures due to different attacker
capabilities obsoleting these.

4.2 Comparison of Attacker Models

In this section, we present the differences between the three introduced attacker
models. A tabular overview is provided in Table 4.1.

Table 4.1: Comparison of the three different attacker models. Key: x = explicitly
defined; (x) = implied.

Attacker Models OAuth Updated OAuth FAPI 2.0

Web Attacker x x x

Web Attacker as AS x (x) x

Network Attacker x x (x)

Read Authorization Request x x

Read Authorization Response x x

Read and Tamper with Token xRequests and Responses

Read Resource Requests and Responses x

Tamper with Resource Responses x

Obtain Access Token x (x)

Compared to the FAPI attacker model [29] specified in subsection 3.2.1, the OAuth
attacker model [15] (subsection 2.1.3) is significantly less complex. The FAPI-
attackers can be web attackers, participating as AS. They can also control the entire
network, enabling the attackers to intercept, block and tamper with messages. FAPI
attackers can further sit at the authorization endpoint. This means that they can
read authorization requests and responses. Alternatively they can sit at the token
endpoint, enabling them to read and tamper with token requests and responses. Ad-
ditionally, the attacker can also sit at the RS so that they can read resource requests
and read and manipulate the responses.

The main difference between these two attacker models is that the FAPI attacker
can read and tamper with various requests and responses due to leaks through
browser histories or logs. Although the OAuth attacker has access to the net-
work, using TLS will mitigate most attacks. This results in the OAuth attacker
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not having “real” access to the authorization, token, and resource requests and re-
sponses.

Compared to the original OAuth 2.0 Attacker model, the updated version, presented
in [10] (see subsection 2.1.4), includes more types of attackers. While the original
model describes the capabilities of a web attacker and a network attacker, the up-
dated one adds attackers that are capable of reading authorization requests and
responses. In the newer model, an attacker can also obtain access tokens. The
FAPI attacker model includes the attacker types defined in the updated attacker
model and additional ones. It adds a web attacker that participates as an AS and
gives an attacker the capabilities of reading and tampering with token requests and
responses. Moreover, the FAPI 2.0 attacker model also defines attackers that can
read resource requests and responses and tamper with the latter. Thereby, the FAPI
presents an attacker model that is way stronger than the original OAuth attacker
model. The updated OAuth version can be seen as a subset of the FAPI attacker
model, meaning that it only aims to protect against a subset of the attacks the FAPI
aims to protect against. This has to be kept in mind when comparing the different
standards.

4.3 Comparison with the FAPI

In this section, we present the most important results of our comparison. The
complete tabular comparison of 138 (security) features is presented in Appendix B.
In Table 4.2, a tabular overview is provided. It summarizes the significant differences
between the examined specifications.

General Configuration The general configurations of the profiles differ in their
acceptance of various client types and flows. While both OAuth versions and OIDC
support public clients, the FAPI strongly recommends the use of confidential clients,
since they are able to authenticate at the AS. Another noticeable difference is the
acceptance of different flows. OAuth 2.0 allows the authorization code flow, the
implicit flow, and the resource owner password credential grant. In contrast, newer
standards such as the FAPI or OAuth 2.1 forbid the use of the latter two due
to severe security problems. Another reason why the second FAPI version only
supports the authorization code flow might be interoperability and a simplification
of the profiles.

Client Authentication Regarding client authentication, one can notice a shift to-
wards asymmetric cryptography, namely private_key_jwt and MTLS. The FAPI
1.0 baseline profile still accepts a symmetric method, but the newer FAPI pro-
files only accept asymmetric methods. Even OAuth 2.1 recommends the use of
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Table 4.2: Selection of security feature comparison, presented in the tabular com-
parison the Appendix. Key: 0 = not mentioned; # = explicitly not
permitted; [x] = may/can support // named; (x) = should support; x =
must support.

FAPI 1.0 FAPI 2.0 OAuth OIDC
Features/Configuration Bas. Adv. Bas. Adv. 2.0 2.1 1.0

Public Clients (x) # 0 0 x x x

Confidential Clients x x x x x x x

Authorization Code Flow x x x x x x x

Hybrid Flow 0 x # # 0 0 x

Other Flows 0 # # # x # x

Symmetric Client Auth. x # # # [x] [x] x

priv_key x x x x [x] (x) x

MTLS (Auth.) x x x x [x] (x) 0

PKCE x (x) x x 0 x/(x) 0

state x x # # (x) [x] (x)

nonce x x 0 0 0 [x]/x [x]/x

MTLS (Sen. Const. AT) 0 x x x 0 (x) 0

DPoP 0 0 x x 0 (x) 0

JAR # x 0 x 0 0 [x]

JARM # x 0 x 0 0 0

ID token as det. sig. # x 0 # 0 0 [x]

PAR 0 [x] x x 0 [x] 0

RAR 0 0 x x 0 [x] 0

Pre-registered redirect URIs x x # # x/(x) x x
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asymmetric authentication, while OAuth 2.0 and OIDC do not give any restric-
tions.

General Security Features The development over time also shows the replacement
of state and nonce by PKCE, manifesting in OAuth 2.1’s enforcement of PKCE and
the optionality of the state parameter. Furthermore, the encryption of ID tokens
becomes redundant since they are only exchanged in the backchannel due to the
forbiddance of the hybrid flow. We observed that the FAPI version became more
secure from version to version.

Sender-constrained Token Back when the OAuth 2.0 framework was published,
sender-constrained access tokens were not discussed. The first FAPI profile dictates
the use of MTLS for the purpose of sender-constraining since this was the only mech-
anism available at the time. The second FAPI profile also supports the use of DPoP,
a proof-of-possession mechanism that is still in a draft state. OAuth 2.1 recommends
sender-constrained tokens and with that also names DPoP.

Protecting Authorization Requests and Responses Many non-repudiation fea-
tures, such as JAR or JARM, are neither specified in both OAuth protocols nor
OIDC. This may be due to the fact that the FAPI also protects against attackers
with access to requests and responses beyond the transport layer. The more pow-
erful attacker model makes additional protection on other layers mandatory. One
difference in the usage of JAR by the two FAPI profiles is the use of JAR at the
PAR endpoint.

Regarding the protection of the authorization response, support of ID tokens as
detached signatures differs in the two FAPI versions. The first one supports it as a
temporary solution, while the second version explicitly forbids it. OIDC supports
this mechanism by design, according to [23].

Securing the Token Introspection Response and UserInfo response FAPI 2.0
also dictates the use of JWT-secured introspection responses as an additional non-
repudiation feature, which is not necessary to ensure security against the OAuth 2.0
attacker.

PAR and RAR Another temporal development can be seen in the use of PAR.
While it was optional in the first FAPI version, it becomes mandatory in the second
one, most likely due to it becoming an official standard. This further results in
additional requirements for the use of PAR being specified. The new standard is
an optional feature in OAuth 2.1, as RAR is, which also becomes mandatory in the
second FAPI version.
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Secure Redirection Regarding secure redirection, the FAPI specifies way more
(precise) requirements than the non-FAPI profiles. Especially striking is that the
preregistration of redirect URIs is not mandatory in the new FAPI version anymore
since the redirect URIs are transmitted and secured in the Pushed Authorization
Request. Moreover, OAuth 2.1 also defines more recommendations for redirect-
ing.

Communication between Client and Resource Server Another remarkable fea-
ture is that both FAPI versions clearly define requirements for secure communication
between client and RS. In contrast, none of the remaining protocols cover this at all.
One main difference between the two FAPI versions is the integration of the x-fapi-
* headers, which were removed in the newer specification.

User Contact Similarly, requirements for the user context were specified in the
first FAPI profile. Except for OIDC, this was not done in the remaining specifica-
tions.

Strong Cryptography Cryptographic and algorithm recommendations are also mainly
specified in the FAPI profiles and OIDC. Noticeable is that OIDC supports algo-
rithms that are not secure. The reason for this is the publication date of the stan-
dard. OAuth might not specify many cryptographic requirements since there are no
ID tokens and no signatures present.

Assurance of secure transmission Regarding TLS recommendations, the second
FAPI specification dictates the most, even concrete cipher suites. Both OAuth
versions and OIDC also recommend some of the recommendations, stated in the
FAPI specifications but in a less specific way. At the publishing date of OAuth
2.0, TLS 1.1 was the most used version, and TLS 1.2 was still new, so enforcement
of TLS 1.2 was not feasible. On the other hand, the protocol clearly states that
appropriate TLS versions will vary over time

Enforcement of Security Best Practices Security best practices partly being rec-
ommended in both OAuth versions and OIDC become mandatory in the FAPI pro-
files. Some of the first FAPI features are not defined in the second FAPI profile.
Especially refresh token rotation is not recommended in the second FAPI profiles
since it does not bear a more significant security benefit but can come with opera-
tional issues.

Additionally, only FAPI 1.0 profiles recommend the use of certified FAPI-implementations,
since there is not yet a certification process for FAPI 2.0 available.
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4.4 Comparison with the FAPI CIBA Profile

In order to answer the question, whether the FAPI CIBA profile [53] (subsec-
tion 3.1.4) provides security improvements compared to the OIDC CIBA exten-
sion [54] (subsection 2.2.3), a comparison of the supported and required features is
performed. The tabular comparison provides an overview of the specified security
features of both specifications. A summarized table of the most significant differ-
ences is displayed in Table 4.3. The tables presented do not claim to be complete
and are subject to change since the FAPI CIBA profile is still in a draft state. We
assembled the tables by incorporating security features and configurations specified
in the FAPI CIBA profile. Then, we verified the presence of these measures in the
OIDC CIBA specification. Finally, the features were sorted into different categories,
providing a better overview.

A tabular comparison to the OAuth 2.0 Device Authorization Grant [19] (subsec-
tion 2.1.2) can be found in the Appendix B. Comparing the CIBA profile to the
Device Grant is not in focus since the flows may seemingly have similarities, such
as polling the AS or employing the user_code parameter. However, the user_-
code functions completely different in the both specifications. In the Device Grant,
the user code is a required parameter and an essential part of the authorization
flow. In contrast, the user code is an optional parameter in the CIBA flow that
functions as spam protection. Another striking difference is the different scenarios
both flows are used in, depending on the capabilities of the client. In the Device
Grant, the client has no access to a browser, while it does in a CIBA scenario, re-
sulting in RO-client interaction, which is not possible in the Device grant. Since
both flows have different application purposes and the FAPI CIBA profile cannot
directly be used for the Device grant, a tabular comparison might not be reason-
able.

Regarding the general configurations, a huge security improvement is the prohibi-
tion of public client in the FAPI CIBA profile. Another CIBA-specific limitation
is that only ping and poll mode are accepted in the FAPI profile. The poll mode
must be supported and is the preferred method for obtaining tokens. Additionally,
the FAPI profile specifies accepted methods for client authentication, which are not
limited in the OIDC CIBA standardization. Moreover, the FAPI enforces several
CIBA specific security features, such as the mandatory use of signed backchannel au-
thentication requests, the binding_message parameter or the inclusion of different
claims, which are optional in the original specification. Another visible difference is
the support of all FAPI-related measures, enforced through two statements included
in the FAPI CIBA profile. The AS must support all regulations stated in “clause
5.2.2 of Financial-grade API - Part 1 and clause 5.2.2 of Financial-grade API - Part
2” [53] of both implementer’s drafts [3] [4]. Further, confidential clients must sup-
port the regulations given in “ clause 5.2.4 of Financial-grade API - Part 1 [FAPI1]
and clause 5.2.4 of Financial-grade API - Part 2 [FAPI2]” [53]. Thereby, the profile



42 4 (Tabular) Comparison of Security Features

Table 4.3: Comparison of the FAPI CIBA Profile with the OIDC CIBA Flow. Key:
0 = not mentioned; # = explicitly not permitted; [x] = may/can support
// named; (x) = should support; x = must support.

Features/Configuration FAPI 1.0 CIBA Draft OIDC CIBA

Public Clients # x

Confidential Clients x x

Push Mode # x

Poll Mode x x

Ping Mode [x] x

Signed Backchannel Auth. x [x]Requests

binding_message / unique x [x]Auth. Context

user_code mechanism [x] [x]

references the second implementer’s draft versions, described in subsection 3.1.3.
The FAPI CIBA profiles also includes the same TLS and algorithm considerations
that are given in the main FAPI profiles. The OIDC CIBA version does not specify
TLS considerations to this extent.
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Provider

The OpenID Foundation offers certification mechanisms for FAPI ASs and clients.
We set up a certified client and AS to gain practical experience and impressions
from working with real-life FAPI implementations. First, we describe our reasons
for selecting the Gluu oxd Client API 4.2 [48] and the Gluu Server 4.2 [46]. Then
we describe the implementation of our testing tool and the setup process. Finally,
we will analyze the two applications to document the security features they are
providing.

5.1 Selection of a FAPI Client and Provider

The OpenID Foundation offers a certification program for AS and client applica-
tions [1]. Apart from the standard OpenID certification, FAPI certifications are
available for ASs and clients. Further, a certification is available for the FAPI CIBA
profile. Both the FAPI 1.0 baseline and advanced profiles are covered in different
development stages. Implementations are certified for the FAPI 1.0 Second Imple-
menter’s draft and the final version. Additionally, different configurations for each
version can be certified, e.g. AS using MTLS or private key authentication. Further,
different adaptions of the FAPI, such as Brazil Open Banking, can be certified as
well.

Compared to the number of the certified FAPI ASs, less FAPI clients are cer-
tified. There are only four different certified clients, apart from the clients be-
longing to Brazil Open Banking. Due to these limitations, we decided to first
choose a well-documented, open-source client implementation before choosing a
matching open-source AS. The Gluu oxd Client API 4.2 [48] is a well-documented
client implementation, certified for the second implementer’s draft [1]. The oxd
Client API is certified for two configurations: MTLS and private key client au-
thentication. The Gluu Server 4.2 [46] is a well-documented AS implementation,
which is also certified for the both configurations of the second implementer’s draft
[1].
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Gluu oxd Client API 4.2 The oxd Client API [48] is a REST application that is
an optional component of the Gluu Server. For this thesis, the oxd Client API is
examined in its standalone version. The oxd Client API provides different endpoints
that a client application can call. The client API then interacts with the AS on the
client application’s behalf, as shown in Figure 5.1. This concept enables different
client applications to use the same authorization and authentication backend, which
can be an advantage. The oxd Client API is available on Github [61]. Further, the
oxd APIs are also documented [43].

Client Application Oxd Client API Gluu Server
(AS)

Client

Figure 5.1: Gluu communication scenario.

Gluu Server 4.2 The Gluu Server [46] is an AS implementation that is used for
identity and access management (IAM). The application supports the use of OAuth
and OIDC, as well as other standards used for federated identity. The Gluu Server
consists of several software components, partly available on Gluu’s Github pages
[63]. Documentation for the Gluu Server APIs is also available. The Gluu Server
API offers endpoints used for token introspection and revocation. The OIDC
API exposes basic OIDC endpoints. Both are part of Gluu’s AS, called oxAuth
[60]. The oxTrust API offers configuration endpoints for the oxTrust Admin GUI
[49].

5.2 Description of the Environment

For further security analysis, we used Docker to containerize the oxd Client API and
the Gluu Server. This enables reproducibility and an enclosed environment.

5.2.1 Gluu oxd Client API 4.2

For the oxd Client API [61], we assembled a Dockerfile ourselves, which is attached
in the Appendix C in Listing C.1. If it is desired to have both the Gluu Server and
the oxd Client API in one network, there are two possibilities. One is to activate
the oxd_server during the deployment of the Gluu Server by adding OXD_SERVER =
True in the settings.py file. Another way that provides a standalone version is to
load the oxd Client API Dockerfile in a docker-compose.override.yml. However,
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in the environment created for testing, both FAPI implementations are indepen-
dently set up. We implemented a testing tool written in python for the oxd Client
API to ensure its functionality and to explore its features.

Starting Script Our tool builds and starts the Docker container with the chosen
configuration file and launches mitmproxy with our addon oxd_addon.py. The use
of the Docker API enables an easy way of integration [6].

Configuration Currently, three configuration files are available one for client au-
thentication with MTLS and one for authentication using Private Key. Apart from
these FAPI variants, we also provide the third file, which enables a standard code
flow, without any FAPI configuration. The three options are differently configured
versions of the oxd-server.yml. This main configuration file enables a complete
configuration of the oxd Client API, such as configuring the server or the logging
[44]. Additionally, a specific file for the registration of the client application is used,
depending on the selected option.

Mitmproxy We chose mitmproxy [26] as an easy way to communicate with the oxd
Client API. The proxy enables sending requests and responding to requests. This
is necessary to test the oxd Client API, since mitmproxy impersonates the client
application and the AS.

Additionally, mitmproxy [26] offers several helpful features such as intercepting
HTTP(S) requests and responses, saving conversations, and the generation of TLS
certificates [25]. Another advantage of mitmproxy is the addon framework [24].
Every addon is essentially a python class that can expose commands for the mitm-
proxy console tool. Further, addons can use event hooks to change mitmproxy’s
behavior. For example, by hooking the request event, the addon can print some-
thing to the event log if a defined request was sent. With the ctx module im-
portant standard objects are exposed. It enables, e. g., writing data to the event
log.

We created the addon oxd_addon.py that defines the Oxd class. In this class we
define all requests a client application would send in a FAPI flow. Every request is
bound to a command, which adds the respective request to the mitmproxy master
flow view. There it can be modified and sent by the user. The oxd Client API is
thereby triggered to send requests to the AS, which is impersonated by the mitm-
proxy in this case. The mitmproxy can respond to these requests since we hooked
the request event. We defined responses for each API endpoint, the oxd Client API
requests. The responses are automatically sent once the endpoint is called. Addi-
tionally, we hooked the response event to save values sent by the oxd Client API, such
as the oxd_id, the state and nonce values. This is necessary, as the oxd Client API
expects these values in the following responses of the AS.
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The implementation we created is easily expandable regarding configuration files and
endpoints. It provides a simple way of displaying the flow, ensuring the functionality
of the setup, and helps to understand how the oxd Client API works.

5.2.2 Gluu Server 4.2

The Gluu Server provides a Docker installation [45]. The executable python zip
archive builds the Docker Compose environment. It is up to the developer to de-
cide which services should run in the environment. Each service runs in its own
container. The Gluu Server consists of 4 to 19 services. The most important ser-
vices are the oxAuth [60] services and the oxTrust [62] service. The first service
functions as the authorization server and supports e.g., OIDC and dynamic client
registration. The latter enables the administration of the Gluu Server via a web
interface.

Due to a lack of time, we were not able to configure the Gluu Server and to implement
a testing tool for the Gluu Server. However, with the concepts demonstrated in
the oxd Client API testing tool, further researchers can easily extend the current
functionality to test the Gluu Server.

5.3 Documentation of Security Features

In this section, we give an overview of the security features supported by the
two examined FAPI implementations. We further explain how they can be con-
figured.

5.3.1 Gluu oxd Client API 4.2

The oxd Client API supports several security features. They can be configured in
the oxd-server.yml. An excerpt of the configuration file can be seen in Listing 5.2.
It displays security-related configuration details.

The oxd Client API supports the use of the nonce and state values. Their expira-
tion time can be specified, and they can be encoded. Further, the oxd Client API
can enforce the validation of the s_hash, the at_hash and the c_hash in the ID
token.

The oxd Client API accepts several client authentication methods: none, client_-
secret_basic, client_secret_post, client_secret_jwt, private_key_jwt, ac-
cess_token, tls_client_auth and self_signed_tls_client_auth [44]. The oxd
Client API is FAPI certified for MTLS and private_key_jwt.
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The oxd Client API supports passing request objects by value and by reference.
The request objects can be signed and encrypted. The support of the hybrid flow
enables the use of ID tokens as detached signatures. Access tokens can be con-
figured to be (signed) JWTs, and their lifetime can be limited. ID tokens can be
signed and encrypted as well. Additionally, the UserInfo response can be signed and
encrypted.

The oxd Client API provides different FAPI-related validations. They can be enabled
by setting the key fapi_enabled to true. This setting makes the audience, the
issuer, and the nonce parameter mandatory in the ID token. Further, the iat value
in the ID token is verified. It is examined, whether the ID token includes an azp
claim, if it also includes multiple audiences [51]. The oxd Client API enables the
pre-registration of redirect URIs.

#server configuration
fapi_enabled: true
mtls_enabled: false
mtls_client_key_store_path: ’’
mtls_client_key_store_password: ’’
tls_version: [’TLSv1.2’]
tls_secure_cipher: [’TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384’]
state_expiration_in_minutes: 5
nonce_expiration_in_minutes: 5
protect_commands_with_access_token: true
protect_commands_with_oxd_id: []
[...]

defaultSiteConfig:
response_types: [’code’, ’code id_token’]
request_uris: []
client_jwks_uri: ’’
token_endpoint_auth_method: ’’
token_endpoint_auth_signing_alg: ’’
access_token_as_jwt: false
access_token_signing_alg: ’’
access_token_lifetime: null
id_token_signed_response_alg: ’’
id_token_encrypted_response_alg: ’’
id_token_encrypted_response_enc: ’’
user_info_signed_response_alg: ’’
user_info_encrypted_response_alg: ’’
user_info_encrypted_response_enc: ’’
request_object_signing_alg: ’’
request_object_encryption_alg: ’’
request_object_encryption_enc: ’’
[...]

Listing 5.2: oxd-server.yml

The oxd-server can be configured to use a specified TLS version with a distinct TLS
cipher suite. Access token and ID token signing algorithms can be defined. Algo-
rithms for signing and encrypting the user info response and request objects can
further be specified. Accepted signing algorithms are: HS256, HS384, HS512, RS256,
RS384, RS512, ES256, ES384, ES512, PS256, PS384 and PS512.
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Due to the design of splitting the client components, the oxd Client API provides
an additional security mechanism to secure the communication between the client
application and the oxd Client API. The connection between these two can be secure
by an access token and/or the oxd_id.

5.3.2 Gluu Server 4.2

The Gluu Server supports several security features. They are configured in the
oxauth-config.xml [64]. It holds the configuration of the Gluu AS. It can be edited
through the admin UI or the oxTrust API by calling the /configuration/oxau-
th/settings endpoint [50].

An excerpt of the configuration file can be seen in Listing 5.3 [47]. It displays
security-related configuration details.

"fapiCompatibility":true,
"userInfoSigningAlgValuesSupported":[],
"userInfoEncryptionAlgValuesSupported": [],
"userInfoEncryptionEncValuesSupported":[],
"idTokenSigningAlgValuesSupported":[],
"idTokenEncryptionAlgValuesSupported":[],
"idTokenEncryptionEncValuesSupported":[],
"requestObjectSigningAlgValuesSupported":[],
"requestObjectEncryptionAlgValuesSupported":[],
"requestObjectEncryptionEncValuesSupported":[],
"tokenEndpointAuthMethodsSupported":[],
"authorizationCodeLifetime":’’,
"refreshTokenLifetime":’’,
"idTokenLifetime":’’,
"accessTokenLifetime":’’,
"dynamicRegistrationEnabled":true,
"clientWhiteList": ["*"],
"clientBlackList": ["*.attacker.com/*"],
[...]

Listing 5.3: oxauth-config.json

The Gluu Server supports similar features as the oxd Client API. It enables client
authentication offering the same options as the oxd Client API. The Gluu Server
is also only FAPI-certified for MTLS and private_key_jwt. The Gluu Server sup-
ports the manual and the dynamic registration of clients. It supports white- and
blacklisting of client redirection URIs. The Gluu Server enables a stricter behavior of
the AS through the fapiCompatibility parameter. Further, it allows configuration
of the access token, authorization code, refresh token, and ID token lifetime. It also
supports the use of MTLS for token binding. The Gluu Server also supports using
signed request objects and specifies allowed algorithms for signing and encryption.
Moreover, the Gluu Server supports signed and encrypted ID tokens and UserInfo
responses. Thereby the supported algorithms are similar to the ones the oxd Client
API supports.
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The Gluu Server further functions as a FAPI CIBA provider. It thereby supports
the poll and the ping mode with MTLS or private key client authentication [1]. It
further supports the authorization device grant.





6 Security Catalog

We will evaluate the security of the FAPI by describing different attacks and their
countermeasures. Throughout this security catalog, we will discuss which well-
known attacks on OIDC [7] and OAuth [13] are theoretically applicable on FAPI
implementations. We describe attacks and possible countermeasures, as well as
countermeasures described in FAPI 1.0 [22] [23], FAPI 2.0 [30] [28] and the FAPI
CIBA profile [53]. Additional attacks on the system, on RO and on RS are attached
in the Appendix (seeAppendix D).

6.1 Attacks on Clients

In this section, we describe a collection of attacks on clients. When testing a FAPI-
certified client, this catalog can be taken as a reference. Testers should verify that the
examined client is protected by the named countermeasures.

6.1.1 Cross-Site Request Forgery (CSRF)

CSRF attacks are widely known and described in [13]. The attacker tricks the
victim into following a malicious URI. In an OAuth scenario, the redirect URI of
the client is a target of interest in the authorization code and implicit grant. With
it, the attacker can inject their own access token or authorization code, which might
then be used to access the resources of the attacker. The impact could cause the
victim to upload sensitive data to the attacker’s resources. This breaks session
integrity.

Therefore, the state parameter can be used in requests sent to the redirection
endpoint. This parameter binds the respective request to the session (UA) and
is included in authorization requests and responses. With that, it also links the
authorization request to the redirect URI. Alternatively, PKCE or the OIDC nonce
can be used to achieve the same CSRF protection. Before utilizing PKCE, the client
has to check whether the AS supports it as well. If it is not supported, the state
or nonce parameter must be used instead.
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Countermeasures by FAPI 1.0 In FAPI 1.0, clients must implement CSRF protec-
tion measures. Further, when the openid scope is requested, a nonce value must be
included in the authentication request. Otherwise, the state parameter has to be
included. Additionally, the use of PKCE is mandatory.

Countermeasures by FAPI 2.0 In FAPI 2.0, PKCE is mandatory and has to be
used with the S256 code challenge method.

6.1.2 Client Impersonation

Client impersonation is described in [13] and in [15]. Attackers can impersonate
clients to get authorization, if the client’s credentials are leaked. An attacker can,
for example, obtain credentials through Client Credential Phishing at the Token
Endpoint, as described in [23]. Authorization server endpoints are not bound to
each other. Clients that do not use different redirect_uris for different ASs open
up a broader attack surface. This can lead to client credential and authorization
code phishing at the token endpoint. In this case, an attacker social engineers the
victim (client developer) into sending the token request to an attacker-controlled
“token endpoint”. This way, the attacker gains knowledge of the secrets and replays
the token request to the “real” token endpoint.

An attacker could also launch phishing attacks when in possession of client creden-
tials. This can happen when credentials are transmitted without protective mea-
sures, such as TLS. Further, automatically processing authorization requests if user
consent was granted previously is dangerous. Attacker clients can exploit being
redirected without renewed user consent to get an authorization code. The victim
does not have a chance to check the client again, wherefore they do not notice the
absence of the honest, public client.

As a countermeasure, clear communication with the end-user about the consent
they are about to grant is always necessary. For example, informing ROs about the
respective client, lifetime, and scope of the authorization process can be helpful as
stated in [11]. Further, the AS can prevent this attack by authenticating the client.
Therefore, different authentication methods are recommended that do not directly
transmit the credentials. Instead, they use MACs or proof of possession mechanisms.
Another recommendation is to not automatically accept identical authorization re-
quests when received multiple times until it is clear who the real sender is. In the
case of public clients, redirection_uris must be pre-registered to mitigate the at-
tack. Further, the scope of automatically issued access tokens can be reduced by
ASs.
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Countermeasures by FAPI 1.0 FAPI 1.0 enforces the use of TLS for all transac-
tions. Further, explicit user approval is necessary, and grant details must be dis-
played to the RO. For client authentication, MTLS, client_secret or private_-
key_jwt have to be used. These authentication methods do not require directly
sending client credentials to the AS. With transport layer and asymmetric authen-
tication, the client_secret is never exposed to attackers. Additionally, for public
clients, it is necessary to pre-register redirect URIs.

Countermeasures by FAPI 2.0 FAPI 2.0 also enforces TLS and, since only con-
fidential clients are allowed, client authentication is mandatory. For the authen-
tication, only asymmetric methods and MTLS are allowed and with PAR, client
authentication happens early on. With transport layer and asymmetric authentica-
tion, the client_secret is never exposed to attackers.

6.1.3 User Session Impersonation

User session impersonation is described in [15]. Attackers can impersonate the client
and the user session. With DNS or ARP spoofing, an attacker can steal the code from
the transmission between the browser and callback endpoint. Then they can send the
code to the client themselves and obtain access to protected resources. A counter-
measure is using a redirect URI with an HTTPS scheme. Another countermeasure is
using server authentication to validate the redirect URI.

Countermeasures by FAPI 1.0 To protect against DNS spoofing, the FAPI 1.0
recommends the use of DNSSEC. Further, redirect URIs must use the HTTPS
scheme.

Countermeasures by FAPI 2.0 To protect against DNS spoofing, the FAPI 2.0
recommends the use of DNSSEC. Further, redirect URIs must use the HTTPS
scheme.

6.1.4 Manipulation of Scripts

The manipulation of scripts is defined in [15]. Clients written in a scripting language
can be vulnerable to an attacker manipulating or exchanging the respective client
scripts. The attacker may modify the scripts by acting as the client webserver and
using DNS and ARP spoofing. This can lead to an attacker gaining knowledge of
user credentials.

To prevent this kind of attack, ASs must authenticate the server, presenting the
scripts. Clients must check that the respective scripts were not modified during
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transportation. Further, single-use secrets, such as the client_secret values, re-
duce the attack’s effectiveness.

Countermeasures by FAPI 1.0 In the first FAPI specification, no explicit protec-
tion against the manipulation of scripts is defined. However, it is recommended to
employ DNSSEC on all endpoints to mitigate DNS spoofing and perform TLS server
certificate checks.

Countermeasures by FAPI 2.0 The newer standardization does not explicitly de-
fine protection measures but recommends using DNSSEC and enforcing TLS server
certificate checks.

6.1.5 Compromising Multiple Clients Sharing the Same Key

The threat of multiple clients sharing the same key is described in [23]. For the use
of MTLS, certificates are needed. These are often issued by certificate authorities.
Sometimes, this happens on an organizational level, where one organization shares
the same certificates with more than one client. This is a disadvantage since the
compromise of one client leads to the compromise of all clients using the same key
material. As a countermeasure, issuing certificates on a client level is recommended
so that no two clients share the same key.

Countermeasures by FAPI 1.0 The advanced profile names this risk and makes de-
velopers aware of it and the possible compromisation of all clients.

Countermeasures by FAPI 2.0 The current FAPI 2.0 draft does not yet specify
this risk.

6.1.6 Request and Response Disclosure and Modification

Disclosure and modification of requests and responses are described in [7] and [23].
Requests can be disclosed to attackers through a compromised UA, for example. In
plain OAuth, authorization requests and responses are not signed and are thereby
not integrity protected. In this case, attackers can manipulate authorization requests
in the browser since TLS is stopped there.

Attacks against authorization responses happen in scenarios where the attacker AS
and the honest AS make use of the same client. Unprotected authorization responses
are vulnerable to parameter injection.
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Signed request objects can be used to prevent attacks from inserting any parameter
wanted. To further protect authorization responses from parameter injections, ID
tokens as detached signatures, including the c_hash, at_hash and s_hash or JARM
can be used for integrity protection.

Countermeasures by FAPI 1.0 Application-level confidentiality is provided in the
advanced profile through the use of JAR and JARM or ID tokens as detached
signatures, including the c_hash, and s_hash.

Countermeasures by FAPI 2.0 In FAPI 2.0, application-level confidentiality is
enforced through the mandatory use of PAR, which enables encryption of the au-
thorization request. In the advanced profile, JAR and JARM are used to provide
additional security.

6.1.7 Mixup Attack

The mixup attack is described in [10] and [23]. In a mix-up attack the client confuses
a compromised AS with the honest AS. Thereby, the client sends an authorization
code or access token directly to the attacker. Prerequisites for this kind of attack
is a client that supports multiple ASs. It needs to support a compromised AS,
controlled by the attacker. If a client only supports one AS, mix-up attacks are not
applicable.

In this attack, the malicious AS returns the same client_id, as an honest, registered
one. As soon as the client is social-engineered into, for example, clicking on a mali-
cious link, an authorization request is sent to the malicious AS. The AS then redirects
the request to the respective honest AS, which returns an authorization code to the
client if it is already logged in. The client then automatically sends a token request
to the malicious AS. The attacker thereby obtains a valid authorization code, which
they can redeem for an access token at the honest AS.

To further mitigate the risk of mix-up attacks, the client stores the issuer identifier,
which is the intended receiver of the authorization request. The issuer is then bound
to the UA and identifies the connection between the used authorization and token
endpoint. The issuer is included in the authorization response by the AS. The client
then compares it with the saved issuer it sends the authorization request to and
stops the flow if they do not match. A less effective alternative to the use of an
issuer, which does not require new features, is utilizing different redirect URIs for
each AS. The client checks whether the URI at which the authorization response was
received matches the one used for the intended AS. If they do not match, the client
stops the flow. However, this mitigation can be circumvented, which disqualifies
it.
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Countermeasures by FAPI 1.0 The advanced profile of FAPI 1.0 names the threat
of AS mix-up attacks and possible mitigations. The FAPI can prohibit this attack
from being successful by including the honest ASs issuer identifier in the secured
authorization response. It can be secured via ID token as a detached signature or
by using JARM.

Countermeasures by FAPI 2.0 FAPI 2.0 enforces the validation of the iss param-
eter by the client in the authorization response.

6.1.8 Obtaining Refresh Token and Access Token

Obtaining refresh tokens and access tokens is described in [15]. Refresh tokens have
to be protected against being obtained from a web or a native application. Attackers
can also steal access tokens from an accessible storage device. Since access tokens
and refresh tokens are normally bearer tokens, attackers can redeem them for access
to protected resources.

To mitigate the risk of stolen refresh tokens, the client_id related to the refresh
token must be validated each refresh. The token scope can be limited and refresh
tokens and client secrets must be revocable. Client authentication and common web
server protection measures help protect a web application from being stolen from.
Further, a physical device lock and the secure storage of secrets prevent reading the
token from the native app’s local file system. The token scope and lifetime should be
limited to reduce the impact of a stolen access token. To mitigate the stealing of ac-
cess tokens, they should be kept in transient or private memory. The same measures
that help protect refresh tokens, protect access token.

Countermeasures by FAPI 1.0 FAPI 1.0 enforces client authentication for confi-
dential clients. Further, token revocation mechanisms should be provided. FAPI 1.0
limits the token lifetime to a maximum of ten minutes. Further, access tokens are
sender-constrained in the advanced profile.

Countermeasures by FAPI 2.0 FAPI 2.0 also enforces client authentication for
confidential clients, which are the only clients supported. The baseline profile dis-
courages the use of refresh token rotation since it “doesn’t bring any security benefits
for confidential clients and can cause significant operational issues” [30]. In FAPI
2.0, the AS must support sender-constraining access tokens, using either MTLS or
DPoP, in both profiles.



6.2 Attacks on Authorization Servers 57

6.2 Attacks on Authorization Servers

In this section, we describe a collection of attacks on ASs. When testing a FAPI-
certified AS, this catalog can be taken as a reference. Testers should verify that the
examined AS is protected by the listed countermeasures.

6.2.1 PKCE Downgrade Attack

The PKCE downgrade attack is described in [10]. Targets for this kind of a common
CSRF attack are an AS that is supporting, but not enforcing, the use of PKCE, and
a client that relies on PKCE for CSRF protection. The attacker acts as an end-user,
which can toggle the use of PKCE through the inclusion of the code_challenge
parameter. The attacker can then send an authorization request without a code_-
challenge parameter, resulting in the AS not enforcing PKCE. Thereby, the AS
issues an authorization code that is not bound to a code_challenge. CSRF attacks
on the client (see subsection 6.1.1) are possible since it solely relies on PKCE for
CSRF protection.

Countermeasures include the correct use of the state parameter or a stricter use
of PKCE. Latter means, that ASs supporting PKCE have to check that a code_-
challenge is included in the authorization response. If so, they have to bind it
to the issued code. Further, it must be checked that if a code was received at the
token endpoint and a code challenge was included in the authorization request, the
matching code verifier is included in the token request. Additionally, if no code
challenge was included in the authorization request, token requests including a code
verifier must be rejected. Mandatory use of PKCE includes the already described
measures.

Countermeasures by FAPI 1.0 The AS and the client must enforce the use of
PKCE, according to RFC7636 [17].

Countermeasures by FAPI 2.0 The AS and the client must enforce the use of
PKCE, according to RFC7636 [17].

6.2.2 Server Masquerading

Server Masquerading is described in [7]. Attackers can disguise their malicious
ASs as honest ASs in a variety of ways. Authenticating the server mitigates this.
Therefore, the client can employ signed and/or encrypted JWTs, as defined in OIDC
core.
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Countermeasures by FAPI 1.0 FAPI 1.0, supports the use of signed and encrypted
JWTs for server authentication. Therefore, JARM or ID tokens as detached signa-
tures are employed in the advanced profile.

Countermeasures by FAPI 2.0 FAPI 2.0 also supports the use of signed JWTs
through the use of JARM in the advanced profile.

6.2.3 Authorization Code Phishing

Authorization code phishing is described in [15]. Authorization codes can be phished
by an attacker imitating the web app client and using DNS or ARP spoofing. Coun-
termeasures helping against authorization code phishing include redirect URIs with
an HTTPS scheme, which are authenticated by the end-users browser through server
authentication. Further, a mandatory client authentication of confidential client
mitigate phishing attempts.

Countermeasures by FAPI 1.0 In the FAPI 1.0, redirect URIs must have an
HTTPS scheme. Further, the use of DNSSEC is recommended to mitigate DNS
spoofing. Additionally, client authentication is mandatory, if confidential clients are
used.

Countermeasures by FAPI 2.0 In FAPI 2.0, redirect URI also must have an
HTTPS scheme, and DNSSEC is recommended. In this case, only confidential clients
are supported and client authentication is mandatory.

6.2.4 Refresh Token Phishing by Counterfeit Authorization Server

Refresh token phishing by a counterfeit authorization server is described in [15].
Attackers can impersonate an AS and proxy the requests to the AS since no verifi-
cation of the AS is specified in OAuth. Therefore, they can intercept requests sent
by the client by using DNS or ARP. Users must verify the authenticity of the AS
before continuing. As a countermeasure, ASs can use TLS and inform the end-user
about potential phishing.

Countermeasures by FAPI 1.0 FAPI 1.0 recommends the use of DNSSEC and
enforces the use of TLS.

Countermeasures by FAPI 2.0 FAPI 2.0 also recommends the use of DNSSEC
and enforces the use of TLS.
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6.2.5 Authorization Code Leakage through Counterfeit Client /
Injection

Authorization code leakage through counterfeit clients is described in [15]. Attack-
ers can abuse the authorization code grant to first trick a victim to grant access
to their counterfeit client sites. Then, attackers can use the code with their own
user accounts to associate their accounts with the victim’s resources on a client
site.

This is also called authorization code injection, as described in [10]. For this attack
to work, the authorization code has to be obtained. However, it is not specified how
the attacker gets the authorization code. If it is not obtained through leakage by
a counterfeit client, single-use authorization codes are recommended to complicate
the attack. In this kind of attack, the attacker injects an authorization code into
their session with a client. They then abuse the client to redeem the code for
them.

As a countermeasure, the best current practices recommend binding the authoriza-
tion code to the respective client instance the code was issued for. To bind the code
to a client, an AS can associate the redirect URI with the authorization code so
that the attack becomes visible at the token endpoint if both redirect URIs do not
match. Further, pre-registered redirect URIs help, as well as deployment-specific
client_id and client_secret pairs for native apps. Binding the client_ids to
the authorization code further complicates the attack.
Newer approaches include the use of PKCE or a nonce. In the first, preferred so-
lution, the attack fails since the code is associated with a specific code_challenge,
not matching the attackers code_verifier. In the latter solution, the nonce is cre-
ated and associated with the UA session by the client and is included in the initial
request to the OpenID Provider, where it is associated with the authorization code
and included in the ID token.

Countermeasures by FAPI 1.0 In FAPI 1.0, pre-registration of redirect URIs are
mandatory. The FAPI 1.0 only accepts authorization codes that are used once. Fur-
ther, PKCE is enforced, and a nonce is included when the openid scope is present.
If this is not the case, the state parameter is included.

Countermeasures by FAPI 2.0 In FAPI 2.0, the pre-registration of redirect URIs
is not mandatory since they have to be included in the PAR. This ensures client
authentication with the authentication request. FAPI 2.0 also only accepts autho-
rization codes that are used once, and PKCE is required.
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6.2.6 Eavesdropping Access/Refresh Token

Eavesdropping access tokens and refresh tokens is described in [15]. Access tokens
and refresh tokens can be eavesdropped between the connection of AS and client, if
no confidentiality protection is in place.

Access tokens should be treated as credentials, and therefore, the protection via
TLS is essential. If not possible, the impact of a stolen access token should at
least be reduced. Therefore, the scope and the token lifetime should be limited.
The binding of the token to the respective client_id can further complicate the
attack.

Countermeasures by FAPI 1.0 FAPI 1.0 enforces the use of TLS for all commu-
nication. It also reduces the impact of a stolen access token by limiting the token
lifetime to a maximum of ten minutes. The advanced profile further complicates the
attack by only issuing sender-constrained access tokens.

Countermeasures by FAPI 2.0 In FAPI 2.0, TLS must be used for all com-
munication and ASs must support sender-constrained access tokens in both pro-
files.

6.2.7 Obtaining Access Tokens, Authorization Codes and Refresh
Tokens from Authorization Server Database

Obtaining access tokens, authorization codes and refresh tokens from the authoriza-
tion server database is described in [15]. Access tokens, refresh tokens and autho-
rization codes can be disclosed, if stored as handles in a database by the AS. If an at-
tacker has access to the database or can successfully perform a SQL injection attack,
access tokens, refresh tokens and codes can be stolen.

Therefore, protection of the database system through system security measures,
credential storage protection best practices, and SQL injection mitigations are nec-
essary. Further, access tokens should only be stored as their hash values, and tokens
should be bound to client_ids.

Countermeasures by FAPI 1.0 FAPI 1.0 does not specify system security measures
or regulations for the storage of tokens. Anyhow, access tokens must be sender-
constrained when using the advanced profile.

Countermeasures by FAPI 2.0 FAPI 2.0 also does not specify security measures re-
garding token storage or SQL injections. A sender-constraining mechanism for access
tokens must be supported in both the baseline and the advanced profile.
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6.2.8 Credential-Guessing Attacks

Credential-guessing attacks are described in [13]. An attacker might be able to
guess credentials, such as access tokens, refresh tokens, authorization codes, and
other credentials when they are chosen badly, e.g., too short. For example, an
attacker can guess pairs of client_id and client_secret, if the entropy of secrets
was chosen too low [15]. This is especially crucial for the entropy of symmetric
keys, as described in [7]. The secret must have a high enough entropy to enable
the generation of strong key material. This ensures an adequate level of security
provided by keys derived from the client_secret. In the same way, authorization
codes can be guessed by an attacker, enabling them to exchange them for a valid
access token and a refresh token [15]. Further, refresh tokens values can be guessed
to get valid access tokens.

To protect against the guessing of access tokens, refresh tokens, authorization codes,
and other credentials, an attacker’s success probability must be reduced as much
as possible. Therefore, tokens and other secrets should have a high entropy or
should be signed [15]. The token lifetime can be limited. Further, the use of strong
client authentication can prevent this form of online guessing. Additionally, accounts
can be locked after a certain number of unsuccessful login attempts. Binding the
code to the redirect URI and the refresh token to the client_id further helps
against guessing the authorization code or refresh token, as it increases the guessing
challenge.

Countermeasures by FAPI 1.0 FAPI 1.0 dictates the AS to offer non-guessable ac-
cess tokens, refresh tokens and authorization codes with a high entropy. When using
symmetric keys, the client secret used must be at least 128 bits long and thereby ad-
here to the requirements stated in [7]. In the advanced profile, the use of symmetric
key cryptography is not an option. Further, access tokens should only be valid for
ten minutes. If the time is longer, they must be sender-constrained, which is manda-
tory in the advanced profile. Both measures reduce the attack impact of guessing a
token. In the advanced profile, both authorization requests and responses are signed,
which further mitigates the success of guessing attacks.

Countermeasures by FAPI 2.0 In the second version of the FAPI, sender-constrained
access tokens are mandatory in both profiles. It also states to only issue credentials
with an entropy of at least 128 bits. In FAPI 2.0 the use of symmetric key cryp-
tography is not an option. With JAR and JARM, both authorization request and
response are signed in the advanced profile.
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6.2.9 Credential Leakage via Browser History / Log Files

Credential leakage via the browser history or via log files are described in [10]
and in [15]. Credentials, such as authorization codes and access tokens can leak
through the browser history if an attacker has physical access to the respective de-
vice. This results in authorization code replay attacks as well as in unauthorized
access to protected resources. Authorization codes can leak via the browser his-
tory when the redirect to the redirection endpoint contains the code value. Access
tokens can leak via the browser history or log files when sent in query parame-
ters.

Mitigations include employing authorization code replay prevention and using the
form post response mode as an alternative to redirecting. Additionally, access tokens
should not be transmitted as query parameters. Therefore, using the authorization
code grant and the form post response mode is recommended. Countermeasures
include employing authorization headers and post parameters. Additionally, the
logging must be sufficiently configured and authenticated requests can be enforced.
Generally, limiting the access token scope and lifetime and making them single-use
lowers the attack’s impact.

Countermeasures by FAPI 1.0 In FAPI 1.0, access tokens must not be sent in
query parameters, but as HTTP headers. Further, strict access control to logs
is recommended. Access tokens are limited to ten minute lifetime and are sender-
constrained in the advanced profile. Authorization codes are single-use.

Countermeasures by FAPI 2.0 Authorization codes are single-use. If this is not
possible, their lifetime should be restricted to one minute. FAPI 2.0 does not allow
sending access tokens in query parameters. Sender-constraining access tokens must
be supported in both profiles.

6.2.10 Credential Leakage via Referrer Headers

Credential leakage via referrer headers is described in [10]. Credentials, such as
authorization codes, state values and access tokens (transmitted in URI fragments),
can be leaked through referrer headers from the client or AS websites. Attackers
knowing these values can use those for the following attacks.
The client leaks credentials when rendering a specific page after a successful au-
thorization response. This page either includes links to attacker pages on which
a user clicks, or third-party content, e.g., advertisement. Then, attackers obtain
the authorization response URL to get the code and state values. The AS also
leaks credentials, in cases where the authorization endpoint includes either links or
third-party contents.
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To mitigate credentials leakage via referrer headers, both the authorization endpoint
and the clients landing page after a successful authorization response should not
contain external links or third-party resources. Further, methods that complicate
the attack are suppressing the referrer header through a referrer policy and using
the authorization code grant. Moreover, the binding of the authorization code to
either a confidential client or a respective PKCE challenge will force the attacker
to guess an additional value. Another mitigation is to make the authorization code
single-use and revoke all tokens issued by that code if it is used twice. Similarly, the
state value should be single-use and made invalid after being used at the redirection
endpoint. Alternatively, the form post response mode can be used to avoid the risks
of redirection for the authorization response.

Countermeasures by FAPI 1.0 FAPI 1.0 mandates the use of the authorization
code grant or the hybrid flow with the response type code id_token. Further, the
use of PKCE is mandatory, and authorization codes are single-use.

Countermeasures by FAPI 2.0 FAPI 2.0 only supports the authorization code
grant and enforces the use of PKCE. Authorization codes are single-use and with
PAR, client authentication can happen early on.

6.2.11 Insufficient Redirect URI Validation / Redirect URI Manipulation

Insufficient redirect URI validation is described in [10]. When ASs accept the reg-
istration of redirect URI patterns, they might be vulnerable to insufficient redirect
URI validation. The validation logic is complex to implement correctly. Patterns
can allow the use of wildcards, even allowing characters that are normally not valid
for domain names. If the pattern validation logic is not implemented correctly,
attackers can obtain authorization codes and access tokens. An example is the au-
thorization code redirection URI manipulation, described in the OAuth Framework
[13]. In the attack, an attacker has the ability to change the redirect_uri to their
desire. They can lead the AS to redirect the UA to their chosen URI. Since they
can choose an URI in their control, they can obtain the authorization code sent in
the redirected authorization response. Therefore, they can send the UA to a URI in
their control.

Countermeasures include simplifying the validation logic to the extent that only
exact string matching of preregistered redirect URIs is allowed. Further, open redi-
rectors and the reattaching of fragments to redirect URIs should be prevented. Ad-
ditionally, issuing of access tokens at the token endpoint is recommended. An alter-
native to limit the danger of insufficient redirect URI validation is the use of JAR or
PAR since both provide integrity and origin verification mechanisms. Therefore, the
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AS can trust the known clients and the redirect URI included in the authorization
request.

Countermeasures by FAPI 1.0 In the FAPI 1.0, the use of preregistered redi-
rect_uris is mandatory. ASs and clients must validate and compare them to the
used URIs. Further recommendations regarding the prevention of open redirec-
tors are mandatory. PAR can be supported, and JAR is mandatory when using
the advanced profile. Additionally, access tokens are only issued at the token end-
point.

Countermeasures by FAPI 2.0 In the second FAPI profile, the use of PAR is
mandatory. Further, JAR is also essential when using the advanced profile. Redirect
URIs are included in the PAR, the exposure of open redirectors is forbidden, and
only the authorization code grant is allowed.

6.2.12 307 Redirect

The threat of the 307 redirect is described in [10]. After the AS successfully au-
thenticated the end-user, they are redirected back to the redirection endpoint of
the client. According to the OAuth 2.0 Framework, HTTP status code 307 is also
allowed, resulting in the transmission of the user credentials from the AS to the
client. In case of a malicious client, it can impersonate the end-user by utilizing the
received credentials.

Therefore, HTTP status code 307 should not be used for redirection but instead 303.
With this code, HTTP POST requests are always rewritten to HTTP GET requests
resulting in the user credentials not being transmitted in the body.

Countermeasures by FAPI 1.0 FAPI 1.0 does not specify any rule regarding the
redirection HTTP status codes.

Countermeasures by FAPI 2.0 Contrary, FAPI 2.0 forbids the use of the 307
HTTP status code, while the use of 303 status code is highly recommended.

6.2.13 Open Redirection

The threat of open redirectors is described in [13], [15], [10] and [11]. Open Redi-
rectors are endpoints that automatically redirect an UA to a location specified in
a query parameter. The problem is that the location is not validated, resulting
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in open redirectors that can be utilized for further attacks, such as phishing at-
tacks. Open redirectors combined with only partly registered redirect URIs allow
the attacker to bypass the AS validation. Thereby, the attacker transmits tokens or
the authorization code to themselves. It further might lead to the abuse of URLs
that point to the client but lead to a phishing site. ASs can be abused as open
redirectors by changing the redirect URI at the authorization endpoint. Open redi-
rectors can also be used for phishing attacks in this case since the victim trusts the
AS.

To prohibit open redirectors, ASs and clients should validate the query parameter’s
value or register the complete redirect URI. Alternatively, clients can follow redirects
if they can prove its origin and integrity of it. ASs should only accept fully registered
redirect URIs and not automatically redirect without verification of the redirect URI
and the respective client id. In the case of an untrusted URI, an AS can delegate
the trust decision to the RO.

Countermeasures by FAPI 1.0 The first FAPI specification prevents this attack by
enforcing the pre-registration of redirect URIs and the exact matching of the redi-
rect_uri at the AS. Further, both public and confidential clients have to store and
compare the redirect_uri of the end-user’s session with the URI the authorization
response was received at. If they are not similar, the flow is stopped.

Countermeasures by FAPI 2.0 The newer FAPI specification prohibits exposing
open redirectors at ASs and clients. Compared to FAPI 1.0, preregistered redirect
URIs are not necessary, since they are included in the PAR, which provides client
authentication.

6.2.14 DoS attacks

DoS attacks are described in [15]. ASs can be attacked by requesting a great num-
ber of authorization codes and access tokens. Further, DoS attacks that exhaust
resources are only possible if there is no user intervention.
Attackers in control of a botnet can find clients redirect URIs. Then they can
send manufactured, random authorization codes and cause a great number of con-
nections on a single AS. The clients redeeming the codes, “protect” the attackers
identity.

To prohibit the first kind of attack, the number of valid tokens per user can be
limited, and authorization codes should have sufficient entropy. Countermeasures
against manufactured authorization codes include using the state parameter. ASs
can stop the attack, by blocking requests from clients that send too many wrong
authorization codes.
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Countermeasures by FAPI 1.0 Since the first FAPI specification enforces sufficient
entropy for authorization codes and access tokens, DoS attacks aiming to cover
all possibilities are mitigated. Further, the specification dictates using the state
parameter (when openid is not requested).

Countermeasures by FAPI 2.0 The second FAPI sepcification also ensures a high
entropy of authorization codes and access tokens. State protection in FAPI 2.0 is
replaced by PKCE.

6.2.15 Clickjacking

Clickjacking is one of the attacks, explained in [13]. Clickjacking describes the at-
tack of tricking a user into clicking on visible buttons, which are positioned under an
invisible iframe. The iframe includes the authorization endpoint webpage. Dummy
buttons visible for the user are directly under important buttons such as “Autho-
rize!”. The victim believes they clicked on a cute cat video, but in reality, they
clicked on the invisible button, granting access to the attacker’s client. Further,
clickjacking can be used to obtain the ROs credentials, change the scope or access
the protected resources.

A mitigation for this attack is the use of external browsers when native apps request
user authentication. ASs can forbid iframes by setting the x-frame-options header,
either to deny or to sameorigin. While the first prohibits any iframing and the lat-
ter only allows framing by sites with the same origin. For older browsers, JavaScript
frame-busting methods can be used instead. Additionally, ASs are recommended to
use Content Security Policies (level 2) on the authorization endpoint and other end-
points responsible for authentication and authorization.

Countermeasures by FAPI 1.0 FAPI 1.0 does not define explicit countermeasures
against clickjacking.

Countermeasures by FAPI 2.0 FAPI 2.0 does not define explicit countermeasures
against clickjacking.

6.3 FAPI-specific Attacks

The attacks in this section were presented by Fett et al. [59]. They are known to be
successful on the FAPI 1.0. The authors name countermeasures for most of them.
However, these countermeasures have not all been added to the FAPI specifications
yet.



6.3 FAPI-specific Attacks 67

6.3.1 PKCE Chosen Challenge Attack

The PKCE chosen challenge attack is described in [59]. The “PKCE Chosen Chal-
lenge Attack” circumvents the authorization code protection that should normally
be provided by PKCE. The attack scenario includes the installation of an honest
and a malicious client app on the end-users device. Thereby, the honest app is a
public client, registered at the honest AS, while the malicious one is not. The attack
starts with the malicious app requesting the user to log in. It then sends an autho-
rization request to the honest AS, containing both client_id and redirect_uri
of the honest app, and the calculated code_challenge of a chosen code_verifer.
The AS redirects the user to the honest app after processing the request and after
successful end-user authentication. The authorization response might leak to the at-
tacker, including the authorization code. As the attacker knows the code_verifier
and does not need to authenticate at the server, they can exchange the obtained
code at the honest AS against a valid access token to the end-users protected re-
sources. The AS does not require client authentication since the honest app is a
public client.

The only possibility to mitigate this attack is, binding the code_challenge to the
client_id of the honest client, that created the code_verifier. They can be bound
together by signing the authorization request object, as specified in JAR. This solu-
tion expects public clients to have the ability to store secrets.

Countermeasures by FAPI 1.0 The FAPI baseline 1.0 profile is vulnerable to this
attack. The advanced profile mitigates this attack by only allowing confidential
clients that make use of JAR to protect the authorization response.

Countermeasures by FAPI 2.0 FAPI 2.0 is not vulnerable to this attack, since only
confidential clients are allowed and the use of PAR is mandatory in the baseline and
advanced profile. PAR allows client authentication in an early state.

6.3.2 Cuckoo’s Token Attack

In the formal security analysis of the FAPI 1.0, published by Fett et al., the so-
called “Cuckoo’s Token Attack” is introduced [59]. This attack is directed against
the binding of access tokens in the FAPI advanced profile. Sender-constraining
access tokens might prevent an attacker from redeeming the token themselves, but
it is still possible to abuse a client for redeeming the token.
The attack scenario can either be a hybrid flow with an ID token as a detached
signature or an authorization code flow with JARM. In the scenario, the attacker
takes on the role of an end-user and of a malicious AS. The attack assumes that the
attacker already phished a certificate bound access token, bound to a client (victim).
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The client victim has to support multiple ASs, including the malicious one. Further,
the client must be configured to use the same honest RS with both the malicious
and the honest AS. The token is issued by an honest AS for accessing the resources
of an honest end-user. First, the attacker starts the flow in the role of an end-
user, who pretends to authorize the client (victim) at the attacker AS. The client
thereupon sends the authorization request to the AS. The AS directly responds with
the authorization response since user authentication is not needed with the attacker
controlling both user and AS. After the token request, the malicious AS returns the
phished access token in the token response. This token is bound to correct client,
which does not notice a difference between a flow with an honest AS. For that reason,
the client normally redeems the access token at the RS and receives the protected
resources of the honest user the access token was “stolen” from. The client returns
the information to the attacker (in the role of the end-user) without knowing that
the users do not match. The attacker now has access to the protected resource, even
in the presence of certificate-bound access token.

A protection measure against this attack is sending the AS’s identity, which issued
the token, in the resource request. This enables the RS to check for the correct
AS/sender before returning protected resources.

Countermeasures by FAPI 1.0 FAPI 1.0 does not name explicit countermeasures
for this kind of attack.

Countermeasures by FAPI 2.0 FAPI 2.0 does not name explicit countermeasures
for this kind of attack.

6.3.3 Access Token Injection with ID Token Replay

This attack is another attack on the binding of access tokens in the FAPI 1.0 ad-
vanced profile. It is also described in [59]. In this scenario, the attacker has already
obtained an access token, bound to a certain client. The access token is issued by
an honest AS for access to an honest user’s resources. Further, the token endpoint
of the target AS is misconfigured to redirect to an attacker-controlled URI. The at-
tacker starts the flow as the end-user at the honest but misconfigured AS. After the
authorization request and successful user authentication, an ID token is returned
in the authorization response in case of the hybrid flow. Now the client sends the
token request to the misconfigured token endpoint in control of the attacker. The
attacker then directly responds with the previously phished access token and an ID
token since client authentication of further proof is not necessary for the attacker.
Thereby the ID token is the one that was transmitted through their user-agent in
the authorization response. The client checks according to the requirements of the
profile whether certain ID token values are the same, which is the case since both
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tokens are the same. Finally, the client redeems the sender-constrained access token
at the resource server, which responds with the protected resources of the honest
user (victim). This way, the client allows the attacker access to the protected re-
sources.

This attack can be mitigated by including the hash of the access token in the ID
token returned at the token endpoint. This mitigation works for both the hybrid
flow, using ID token as detached signatures, and the authorization code flow, using
JARM.

Countermeasures by FAPI 1.0 The advanced profile names the possible inclusion
of a c_hash and at_hash, when OIDC is used.

Countermeasures by FAPI 2.0 FAPI 2.0 does not specify direct countermea-
sures.

6.3.4 Authorization Request Leak Attacks

The leakage of authorization requests is an assumption of the FAPI attacker model,
made by Fett et al. in [59]. This leads to the exposure of the code_challenge and
the state values. Attackers, in possession of the state value, can circumvent the
CSRF protection and with that break session integrity. Session integrity is broken
by logging in the end-user under the attacker’s identity. Authorization request leak
attacks are already known, but the FAPI and with that PKCE fail to protect against
it.

With the strong FAPI attacker model, CSRF attacks have to be mitigated to prevent
this attack. Session integrity is only proven by Fett et al. for clients using OAUTHB [5],
a deprecated attempt on token binding. For every other client, session integrity has
not been proven with an attacker model of this strength.

Countermeasures by FAPI 1.0 Although FAPI 1.0 enforces the implementation
of an effective CSRF protection, Fett et al. were not able to prove session integrity.
FAPI 1.0 with MTLS for token-binding is vulnerable to authorization request leak
attacks.

Countermeasures by FAPI 2.0 For FAPI 2.0, session integrity was not proven
yet.
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6.4 Attacks on CIBA

The presented attacks on the Client-Initiated Backchannel Authentication flow orig-
inate in the security considerations of the OIDC CIBA specification [54] and the
FAPI CIBA profile draft [53]. Attacks named in the sections above might be appli-
cable on the CIBA flow as well.

6.4.1 CIBA Injection Attack

Injection attacks on CIBA are described in [54]. If the login_hint_token param-
eter is not signed in the authentication request, the sender of the hint cannot be
identified. This may lead to injection attacks and the collection of user identi-
fiers.

Countermeasures by the FAPI 1.0 CIBA profile The FAPI CIBA profile rec-
ommends not to use the login_hint_token for the transmission of authorization
metadata.

6.4.2 Backchannel Client Notification Endpoint Confusion

This threat is described in [54]. If the backchannel_client_notification_end-
point, defined during registration, is in control of an attacker, the AS might send
the authentication results directly to them.

Countermeasures by the FAPI 1.0 CIBA profile The FAPI CIBA profile strongly
recommends the use of the poll mode, instead of the ping or push mode, for which
this endpoint is needed. The push mode is strongly forbidden, while the ping mode
is tolerated.

6.4.3 Obtaining Access Token and Manipulating Values in Push Callback

This threat is explained in [54]. Since the CIBA flow in the push mode is not
based on redirecting, tokens can be obtained and manipulated when directly sent
to the client’s notification endpoint. Hashes of access tokens and refresh tokens are
included in the signed ID token to mitigate this attack. Sender-constraining access
tokens also reduces the attack’s impact.

Countermeasures by the FAPI 1.0 CIBA profile The FAPI CIBA profile addi-
tionally requires the use of sender-constrained access token and prohibits the use of
the push mode.
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6.4.4 Authentication Sessions Started Without a Users Knowledge or
Consent

This threat is described in [53]. In the Client-Initiated Backchannel Authentication
flow, the client starts the authentication process. Since the end-user is not involved in
the starting process, an attacker can start sessions without the user’s knowledge. The
threat is even more prominent in cases where the login_hint is a known identifier,
for example a phone number.

Countermeasures by the FAPI 1.0 CIBA profile The FAPI CIBA profiles recom-
mends the use of a nonce as a login_hint or the alternative acceptance of id_to-
ken_hints. In that case, the ID token must be obtained appropriately. Additionally,
the user_code mechanism can be used as spam protection.

6.4.5 Reliance on User to Confirm Binding Messages

This threat is described in [53]. Attackers might initiate a malicious flow with an
honest RO’s identifier. At the same time, the honest end-user participates in an hon-
est flow. In cases where both requests have the same scope, the only difference exists
in the binding_message which has to be checked by the RO. This makes the vali-
dation of the binding_message a single point of failure.

Countermeasures by the FAPI 1.0 CIBA profile The FAPI CIBA profile discusses
this issue and recommends alternative measures to facilitate the manual verifica-
tion of this message. For example, scanning a QR code instead of manual check-
ing.

6.4.6 Loss of Fraud Markers to OpenID Provider

This threat is explained in [54]. The CIBA flow is not redirect based. This decreases
data that may help detect fraud.

Countermeasures by the FAPI 1.0 CIBA profile The FAPI CIBA profile names
this threat and states the possible lack of fraud detection. Thereby it raises aware-
ness.





7 Evaluation

To evaluate the security of the financial-grade API, we will sum up the results of the
comparison, performed in chapter 4, the practical experience and impressions gained
through the set up described in chapter 5 and the outcomes of the security catalog
in chapter 6. Thereby, we aim to answer the research questions: which concepts
enable the high-security of the FAPI, which known attacks on OAuth and OIDC are
applicable on the FAPI and whether the FAPI provides security improvements to
classic OAuth and OIDC flows.

7.1 Evaluation of the Comparison Results

Comparing the FAPI to “conventional” OAuth and OIDC implementations shows
that the FAPI specifications offer more comprehensive profiles. The profiles thereby
also include recommendations regarding cryptography, redirection, and communica-
tion between client and RS. These topics are not discussed in the compared frame-
works. One benefit of creating profiles is interoperability. All four specified profiles
do not leave a lot of choices.

When comparing the FAPI to “conventional” OAuth and OIDC implementations,
one has to consider the different underlying attacker models. The FAPI has an at-
tacker model that is stronger than both the original and the updated OAuth 2.0
attacker model. If one only considers the similar capabilities of the updated at-
tacker model and the FAPI attacker model, OAuth 2.1 and the FAPI specifications
have many commonalities. However, the FAPI aims to protect against a stronger
attacker by employing non-repudiation features, such as JAR, JARM and PAR. Fur-
ther, the FAPI specifications cover a broader scope of security measures as specified
above.

Additionally, the FAPI defines a security level that is secure at the current time. It
includes many up-to-date security features that were not available at the time of the
publication of the original OAuth framework. This leads to the question of how long
the FAPI will remain secure or whether such a profile creation only lasts a few years
until newer specifications are needed. Older profiles may then give a false sense of
security. The development of the FAPI 2.0 so quickly after the publishing of the first
one does not promise a sustainable permanent solution.
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Regarding the FAPI CIBA profile, one can say that it ensures a secure configu-
ration of the OIDC CIBA specification. The FAPI CIBA profile results not only
in a more secured communication but also in better interoperability. The FAPI
also provides extensive regulations regarding TLS and algorithm considerations.
However, the FAPI CIBA profile is still in a draft state, meaning that it might
change in the future. Further, it should be discussed whether supporting all reg-
ulations of the main FAPI profiles is necessary and appropriate in the CIBA con-
text.

7.2 Impressions of Real-World implementations

Working with the oxd Client API gave us an insight in setting up and configuring
a FAPI-certified client. First, it is noticeable that far less FAPI-clients, than FAPI-
ASs are certified. Moreover, the certification test suite does not cover FAPI system
regulations, such as strong access control to the logs. There is no certification
for RSs or for the FAPI 2.0 drafts. Configuring the oxd Client API to be FAPI-
compliant was not trivial. Gluu does not provide explicit documentation on how to
make the oxd Client API FAPI/compliant. Further, we noticed that the oxd Client
API cannot be FAPI-certified on its own. Due to it’s design, the oxd Client API
cannot function as a standalone client. An additional client application is needed,
which has to validate the authorization response. The oxd Client API does not offer
a mechanism for validating the authorization response. Thereby, the ID token as
a detached signature is not validated by the FAPI-certified client implementation.
Furthermore, the design of the oxd Client API is not standard-conform. Dividing the
client into two parts might increase the potential attack surface. The communication
between the oxd Client API and one or more client application(s) can be further
protected by an additional token and an ID. However, the design of the oxd Client
API is not explicitly prohibited by the FAPI.

7.3 Evaluation of the Security Catalog

The security catalog shows that the FAPI enforces protective measures against most
of the known attacks on OAuth and OIDC. The attacks are described in security
considerations of the protocol specification, the best current practices [10], and the
OAuth 2.0 threat model [15]. Several threats such as clients obtaining scopes without
RO authorization (see subsection D.4.8) are only applicable on flows, that are strictly
forbidden in the FAPI. Generally, typical FAPI countermeasures, such as sender-
constrained access token, the enforcement of client authentication, and the presence
of PKCE parameters and state of nonce values complicate many attacks and limit
their effectiveness. For example, stolen access tokens that are sender-constrained can
not be redeemed that easily as bearer tokens. Signing authorization requests and
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response is also an effective measure. Especially the enforcement of PAR seems to
be a very effective addition to FAPI 2.0. PAR offers many advantages but especially
enables authentication of the client early on.

However, FAPI 2.0 does not yet implement protective measures against the attacks,
described by Fett et al. [59] in their analysis of FAPI 1.0. These attacks include
“Cuckoo’s Token Attack” (subsection 6.3.2), “Access Token Injection with ID To-
ken Replay” (subsection 6.3.3) and the “PKCE Chosen Challenge Attack” (subsec-
tion 6.3.1), as well as “Authorization Request Leak Attacks” (subsection 6.3.4). All
these attacks are only successful in the presence of several prerequisites and a strong
attacker. Regarding “Authorization Request Leak Attacks”, no evaluation for DPoP
was performed at the time.

Moreover, in some cases such as timing attacks (see subsection D.1.4), or manipu-
lation of scripts (see subsection 6.1.4), the FAPI only enforces a part of the recom-
mended countermeasures. In other cases, the FAPI does not enforce any mitigations,
for example in the phishing category (see subsection D.2.3). The specifications do
not state to inform the user about the potential threat of phishing attacks. How-
ever, the FAPI could define more countermeasures regarding the complete system,
apart from the authorization flows. FAPI 1.0 seems to provide more of these system
security measures, including logging recommendations. On the other hand, FAPI
2.0 does not yet offer general protection measures for the entire system. Recom-
mendations for this might follow, since FAPI 2.0 is currently under active develop-
ment.





8 Conclusion and Future Work

In this thesis, the financial-grade API was systematically analyzed. First, we gave an
introduction to the underlying fundamentals: OAuth and OpenID Connect. Then,
we outlined security extensions employed by the FAPI. We explained the FAPI
profiles and highlighted their differences. Additionally, we compared the security
features used by the FAPI to features used by OAuth and OIDC. The resulting
tables provide a helpful overview for future analysis. Further, we described the
different attacker models and put them into perspective. Then, we set up a FAPI-
certified client and AS and created a testing tool. The tool ensures the functionality
of the setup and enables further manual testing in the environment. Moreover,
we created a security catalog, including known attacks on OAuth and OIDC and
the FAPI’s countermeasures. The catalog provides a reference for further practical
analysis. Finally, we evaluated the results of the comparison, the setup, and the
security catalog. The core results of our analysis are summed up below, answering
our research questions.

Which concepts enable the, according to the FAPI Working group, high-security
level of the FAPI? The FAPI aims to realize a high level of security through the
enforcement of several techniques. First, the FAPI forbids configurations and flows
that are known to be insecure, such as the use of the RO password credentials grant
or insecure cryptographic algorithms. Additionally, the profiles ensure adherence to
security best practices, such as the mandatory use of PKCE, issuing access tokens
with a short lifetime, using client authentication for confidential clients, or including
state or nonce values. To further protect high-risk APIs, the FAPI mandates the
use of sender-constrained access tokens, and non-repudiation features, such as JAR,
JARM and PAR.

Do the FAPI profiles provide security improvements compared to the classic
OAuth and OIDC flows? In conclusion, FAPI 1.0 offers two security profiles for
different needs. Both profiles ensure the use of known security measures and offer
interoperability. The correct use of the FAPI is supported through the certification
offered by the OpenID Foundation. The security level provided by the FAPI can
be achieved by employing several OAuth and OIDC extensions. Nevertheless, the
FAPI limits decision making, which mostly mitigates poor decisions and provides
interoperability. Moreover, it serves as a collection of well-working security mech-
anisms that facilitate the protection of OAuth and OIDC implementations. Both
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FAPI versions and their profiles do not introduce new security mechanisms in their
specifications. However, the development of the FAPI has led to the development
of JARM, PAR and RAR [20]. Furthermore, the FAPI includes many up-to-date
security features that were not available at the time of the publication of the original
OAuth framework. However, with OAuth 2.1, the new “classic” OAuth flows are
closer to the security provided by the FAPI.

Which attacks are applicable on FAPI implementations - clients and providers?
The FAPI is proven to be theoretically secure, shown by Fett et al. [59]. For
the remaining successful attacks, the authors recommend possible countermeasures.
These are not yet implemented. These successful attacks do not have a significant
impact on the security the FAPI provides since strong attackers are needed, and
many prerequisites have to be fulfilled. However, the current drafts of FAPI 2.0
indicate even more secure profiles yet lack specific system-related security recom-
mendations. These might follow in the future since the drafts are in an early stage
of development.

Future Work may focus on the practical analysis of FAPI implementations. The
testing tool we have created can easily be extended to test other configurations and
implementations. The mitmproxy addon framework enables simple adaptation to
the particular implementation. Thereby, the FAPI-certified implementations can be
the starting point.

For testing the oxd Client API, the configuration of MTLS for client authentication
and token binding must be pursued. At this point in time, we were not able to
verify that the oxd Client API uses MTLS, even though the MTLS flags are set.
We configured mitmproxy to request client authentication by patching the current
release. The patched mitmproxy now sends a certificate request to the oxd Client
API, which can be observed by using Wireshark [52]. However, we were not able to
observe the expected responses.

The certification implies certified security, but the confirmation test suites might not
cover everything a manual analysis might find. Thus, the certification test suites
should be evaluated. They can be misleading and implementers might rely on their
promises.

Another focus may lie on the security extensions employed by the FAPI. Several of
the extensions are relatively new and might not have been analyzed properly yet,
for example RAR, PAR or DPoP.

Additionally, the FAPI drafts that are currently under development should be both
theoretically and practically analyzed once finalized. FAPI drafts include the FAPI
2.0 drafts and the FAPI CIBA draft.



A Security Extensions

A.1 JWT-Secured Authorization Request (JAR)

The JWT-Secured Authorization Request (JAR) was introduced with RFC9101 [32]
in August 2021. JAR extends the OAuth 2.0 authorization framework, so that
authorization request parameters can be encoded in a JWT. Thus, authorization
requests can be integrity protected by signing the JWT with JWS and encrypted
by using JWE. The original OAuth 2.0 framework does not provide these additional
integrity and confidentiality measures since the authorization request parameters
were directly sent through the UA, using query parameter serialization. Encoding
the request parameters in the URI also leads to source authentication failure, and
application layer security can not be used. The standardization introduces two new
parameters: the request parameter, holding the JWT-encoded request parameters,
also called the “request object”, and the request_uri, also called the “request
object URI”, which replaces the request parameter, when passing the request by
reference.

A.2 Pushed Authorization Request (PAR)

RFC9126 was published in September 2021 and specifies “OAuth 2.0 Pushed Au-
thorization Requests” [33]. With the PAR specification, clients can push the au-
thorization request content to the AS. Then the AS responds with a request_uri
parameter referring to the pushed data, which is then used by the client for the
subsequent authorization request. Pushing the authorization request has various
advantages since authorization requests can become quite large, and URLs have a
length restriction. Further, the PAR extension can ensure integrity and authenticity
protection as well as confidentiality. The Pushed Authorization Request completes
the JAR standardization, since it realizes the “pass by reference” mechanism, which
uses the request_uri parameter. PAR also implements client authentication at the
AS, before any user interaction happens. The AS must validate the pushed autho-
rization request as if it would be a regular authorization request and authenticate
the client as at the token endpoint. A successful response to a pushed request con-
tains not only the request_uri but also a expires_in parameter, specifying the
lifetime of the URI.
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A.3 Rich Authorization Request (RAR)

The 10th version of the “OAuth 2.0 Rich Authorization Requests” draft was pub-
lished in January 2022 and defines the new authorization request parameter au-
thorization_details [27]. This parameter helps to translate a high demand for
authorization data. This high demand is mainly present in the financial context
since transaction requests may include numerous dynamic details. For example,
transaction details such as the IBAN, the names of sender and receiver, the amount
of money, and the currency. This scenario can hardly be realized only using the
scope parameter. Therefore, the authorization_details parameter was intro-
duced. Fine-grained authorization details are transmitted using an array of JSON
objects. Every object contains a type field, holding a string, which defines the type
of the details and, with that, the allowed object contents. Examples for types can
be account_information or payment_initiation. It is necessary to obtain user
consent over the specified authorization details.

A.4 JWT-Secured Authorization Response Mode (JARM)

The second draft of the “Financial-grade API: JWT Secured Authorization Response
Mode for OAuth 2.0 (JARM)” [2] was published in October 2018 by the OpenID
Foundation. The standardization protects the authorization response by introducing
a JWT-based mode, where the response parameters are encoded as a JWT. JWTs
enable the possibilities of signing and encrypting the authorization response param-
eters. Further it enables sender authentication and audience restriction. Besides the
authorization request parameters, the JWT response document also includes the
iss, aud and exp claims. The claims further secure the transmission by specifying
the respective AS, the client_id and the expiration of the token. The authorization
response JWT contains response parameters according to the respective, requested
response_type. Further, the standard differentiates between three different ways
of response encoding modes: query.jwt, fragment.jwt, form_post.jwt. They all
send the JWT in the defined request parameter of the response. A shortcut to
select the default response mode belonging to the respective response type is called
“jwt”.

A.5 Proof Key for Code Exchange (PKCE)

The “Proof Key for Code Exchange by OAuth Public Clients” was published in
September 2015 [17]. It was created for securing public clients, which are not able
to authenticate at the AS. The security measure aims to protect against the au-
thorization code interception attack. In the attack, the authorization code leaks to
an attacker, which then tries to exchange it against an access token. PKCE with
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S256 as the code challenge method provides protection even in cases where both
authorization request and authorization response leak to the attacker. The measure
binds the authorization request to the token request.

First the client creates a code_verifier, which is a random string. Then the
code_challenge is calculated by hashing the verifier using a defined code_chal-
lenge_method. This method can either be S256, using SHA256 or plain, where both
verifier and challenge are the same. Third, the client includes the verifier and the
calculation method in the authorization request. Then, the AS associates the issued
code with the received code_challenge. After receiving the authorization response,
the client send the token request, including not only the authorization code but also
the code_verifier. The AS can then apply the stated code_challenge_method on
the received code_verifier to compare the result with the code_challenge associ-
ated to the respective code. If the values are the same, the AS can issue an access to-
ken, knowing that it deals with the same party that sends the authorization request.
An attacker that knows both authorization request and response can not redeem
the code since they do not know the code_verifier.

A.6 Mutual TLS (MTLS)

In RFC8705 [31], both Mutual TLS (MTLS) for client authentication and certificate-
bound access token is defined.

Client authentication performed on the transport layer is more secure than sharing
secrets, as specified in OAuth. MTLS can be used for client authentication at all
endpoints, where it needs to be performed: at the token, introspection, revocation,
and the backchannel authentication endpoints. In the standardization, there are two
ways of client authentication using MTLS specified. First, the “PKI Mutual-TLS
Method”, and second the “Self-Signed Certificate Mutual-TLS Method”. In both
ways, the client proves possession of the key to the certificate. For every request
sent with MTLS, the client has to include its client_id, so that the AS can easily
locate the client configuration and check the presented certificate against the saved
client credentials. If the client does not provide a certificate or the correct one, the
AS returns an invalid_client error.

Token binding describes a technique in which the access token is bound to the client,
meaning that it can only be redeemed at the resource server by the associated
client. One way to achieve token binding is by using MTLS. Thereby, the client
uses MTLS for connecting to the token endpoint of the AS, which is then able to
bind the issued token to the client’s certificate. The association is done by including
the hash of the certificate in the access token. This way, the RS can verify the
binding. An alternative is the use of token introspection. When requesting protected
resources at the RS, the client has to use MTLS. The RS can then compare the
hash of the certificate with the one received through the access token or token
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introspection. In case of mismatching certificate, the RS returns an invalid_token
error.

A.7 Demonstration of Proof of Possession (DPoP)

The sixth draft of the “OAuth 2.0 Demonstrating Proof-of-Possession at the Applica-
tion Layer (DPoP)” [34] standardization was published in March 2022 and describes
a proof of possession way of token binding on the application layer. With DPoP,
public and confidential clients can prove possession of a private key to redeem sender-
constrained access tokens or refresh tokens. In contrast to MTLS, DPoP is not used
for client authentication. Further, DPoP does not provide message integrity. For
this purpose it relies on TLS.

The standardization introduces the DPoP proof, which is a signed JWT, including
individual data regarding the HTTP request (e.g., a timestamp and a unique iden-
tifier) and the used signature algorithm as well as the public key of the client. The
DPoP proof is created by the client and then attached to the token request as the
DPoP HTTP header. Then the AS binds the access token (or a refresh token) to the
client’s public key, provided in the DPoP header. The token can only be used by the
client, attaching the particular DPoP proof to the resource request to the RS. Since
the token is bound to the client’s public key, the RS verifies the DPoP proof by com-
paring the public key provided by the DPoP header to the one the token is bound
to. This information can be included in the respective token or can be obtained
at the token introspection endpoint. It further validates the signature and checks
whether the access token hash, which must be included in the DPoP proof sent to
the RS, matches the access token sent in the request. If one of the checks fails, the
RS does not respond with the requested resources.

A.8 Signed JWT Introspection Response

The 12th version of the “JWT Response for OAuth Token Introspection” [55] draft
was published in September 2021. It specifies a secure way of transmitting a token
introspection response by encoding it as a JWT. With token introspection, a RS can
verify the validity of a received token or obtain additional information regarding the
token at the respective token introspection endpoint at the AS. The standardization
enables the token introspection endpoint to return JWT-encoded responses. There-
fore, ASs shall have the capability of identifying, authenticating, and authorizing
RSs by holding credentials and configuration data for the individual RSs. This can
be realized through treating RSs as clients and with that using dynamic client regis-
tration. The JWT response can be requested by the RS through sending the Accept
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HTTP Header with the value “application/token-introspection+jwt”. After authen-
ticating the RS as a client, the AS responds with a JWT including the iss, aud, iat
and the token_introspection claims. The latter includes the token introspection
response members.





B Complete Tabular Comparison

FAPI 1.0 OIDC OAuth 2.0

General Configuration CIBA-Draft CIBA Device Grant

Public Clients # x x

Confidential Clients x x x

Push mode # x 0

Poll mode x x x

Ping mode [x] x 0

Client Authentication  CIBA-Draft CIBA Device Grant

client_secret_basic # x x

client_secret_post # x 0

client_secret_jwt x x 0

private_key_jwt x x 0

none # # #

MTLS x x 0

CIBA specific  CIBA-Draft CIBA Device Grant

Signed Backchannel Auth. Requests x [x] 0

Unsigned Backchannel Auth. Requests # x x

return acr claim in IDT, if requested & supported x [x] 0

nbf claim / exp claim 60 min in Sign. Auth. Req. x 0 0

request_context claim [x] 0 0

login_hint; login_hint_token (#) [x] 0

user_code mechanism [x] [x] x

binding_message / unique Auth. Context x [x] 0

not send x-fapi-customer-ip-address/x-fapi-auth-date headers x 0 0

send metadata about consumption device (x) [x] 0

FAPI specific  CIBA-Draft CIBA Device Grant

PKCE (x) 0 0

JAR x 0 0

JARM x 0 0

Sender-constrained AT (MTLS) x (x) 0

PAR (x) 0 0

nonce x 0 0

Figure B.1: Complete Comparison of the FAPI CIBA profile Draft, the OIDC CIBA
extension and the OAuth 2.0 Authorization Device Grant. Key: 0 =
not mentioned; # = explicitly not permitted; [x] = may/can support //
named; (x) = should support; x = must support.
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OIDC
General Configuration Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

Public Clients (x) # 0 0 x x x

Confidential Clients x x x x x x x

Credentialed Clients 0 0 0 0 0 x 0

Authorization Code Flow x x x x x x x

Hybrid Flow 0 x # # 0 0 x

Implicit Flow 0 # # # x # x

Resource Owner Password Credential Grant 0 # # # x # 0

Client Credentials Grant 0 # # # x x x
Refresh Token x x x x x x x
Client Authentication Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

always client authentication of confidential clients x x x x x x x

client_secret_basic # # # # [x] [x] x

client_secret_post # # # # [x] [x] x

client_secret_jwt x # # # [x] [x] x

private_key_jwt x x x x [x] (x) x

with private_key_jwt: include AS's issuer in aud claim 0 0 x x [x] 0 (x)

none # # # # 0 0 x

MTLS x x x x [x] (x) 0
with MTLS: support the mtls_endpoint_aliases metadata (RFC8705) 0 0 x x 0 0 0

General Security features Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

PKCE x (x) x x 0 x/(x) 0

state x x # # (x) [x] (x)

nonce x x 0 0 0 [x] [x]/x

Signed ID Token x x x x 0 0 x
Encrypted ID Token [x] (x) # # 0 0 [x]
Sender-constrained Access & Refresh Token Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

only issue sender-constrained Access Token [x] x x x 0 (x) 0

MTLS for Access Token 0 x x x 0 (x) 0

with MTLS: compliancy to requirements in RFC8705 0 x x x 0 (x) 0

with MTLS: support the mtls_endpoint_aliases metadata (RFC8705) 0 0 x x 0 0 0

DPoP for Access Token 0 0 x x 0 0 0

DPoP for Refresh Token 0 0 x x 0 (x) 0
with DPoP: compliancy to requirements in DPoP draft 0 0 x x 0 (x) 0

Using JAR Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

support JAR # x 0 x 0 0 [x]

support signed JWT request objects at the PAR endpoint # 0 0 x 0 0 0

pass signed JWT request object by value with request parameter # x 0 [x] 0 0 [x]

pass signed JWT request object by reference with request_uri parameter # x 0 # 0 0 [x]

request object with exp claim with lifetime <= 60 min after nbf claim # x # # 0 0 0

request object with nbf claim that is not longer than 60 min in the past # x # # 0 0 0

include all parameters in the signed request object # x 0 x 0 0 x

only process parameters transmitted in the signed request object # x 0 x 0 0 0
include response_type, client_id & scope in auth. request outside of request object (if not PAR) # x 0 # 0 0 0

Protecting the Auth Response Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

support JARM # x 0 x 0 0 0

using response type code and response mode jwt, when using JARM # x 0 0 0 0 0

creating jwt-secured auth. response compliant to JARM spec., 4.3 # x 0 0 0 0 0

support ID tokens as detached signatures # x 0 [x] 0 0 [x]

using response type code ID token when using ID tokens as detached signatures # x 0 0 0 0 x

OpenID Connect is supported # x [x] [x] 0 0 x

support signed and encrypted ID Token # (x) # # 0 0 x/[x]

when using ID token as detached signature, include a s_hash # x # # 0 0 0

verify s_hash when ID token is used as detached signature # x # # 0 0 0

not return sensitive PII in ID token when sending it as detached signature in the front channel # (x) 0 0 0 0 0
if returning sensitive PII in ID token in front channel, encrypt ID token # (x) 0 0 0 0 0

Securing the token introspection response/userinfo response Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

support JWT introspection response 0 0 0 x 0 0 0

be compliant to RFC7662 - OAuth Token Introspection [x] [x] 0 x 0 [x] 0

sign token introspection responses, if token introspection is supported 0 0 0 x 0 0 0

request signed token introspection responses, if token introspection is supported 0 0 0 x 0 0 0
Signed/(&)Encrypted User Info Response 0 0 0 0 0 0 [x]
PAR Bas. 1.0 Adv. 1.0 Bas. 2.0  Advanced 2.0 2.1 1.0

support PAR (endpoint) 0 [x] x x 0 [x] 0

reject common auth. requests 0 # x x # # #

if PAR, use PKCE with s256 code challenge method 0 x x x 0 0 0

transmit client_id to auth. endpoint when using PAR 0 x x x 0 0 0

only accept client-authenticated PARs 0 # x x # # #

require redirect_uri parameter in pushed auth. Requests 0 0 x x 0 0 0
issue par-request_uri with expires_in values between 5 & 600 seconds 0 0 x x 0 0 0

RAR Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0
support RAR (authorization_details) 0 0 x x 0 [x] 0
Secure Redirection Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

Pre-registration of redirect URIs x x # # x/(x) x x

redirect_uris with https x x x x 0 x/[x] (x)

individual redirect URIs for each AS x x 0 0 0 (x) 0

reject auth requests without redirect_uri x x x x # [x] x

reject auth requests with redirect_uris that don’t match the registered ones x x # # x x x

store redirect uri In UA session (client) & compare with receiving address of auth response x x 0 0 0 [x]/x 0

not use HTTP status code 307 for redirects including user credentials 0 0 x x 0 x 0

FAPI 1.0 FAPI 2.0 OAuth

Figure B.2: First half of the complete Comparison of the FAPI 1.0, 2.0, OAuth 2.0,
2.1 and OIDC. Key: 0 = not mentioned; # = explicitly not permitted;
[x] = may/can support // named; (x) = should support; x = must
support.
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use HTTP status code 303 for redirecting the UA 0 0 (x) (x) 0 (x) 0

not expose open redirectors 0 0 x x [x] x 0

Communication between Client and Resource Server Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

support HTTP GET method (RS) x x 0 0 0 0 0/(x)

support CORS (RS) (x) (x) 0 0 0 0 0/(x)

consider RFC6719 before allowing JavaScript Clients (x) (x) 0 0 0 0 0

send AT in the HTTP header x x x x [x] typic. (x) 0/(x)

don’t sent AT via query parameters x x x x 0 x 0

ensure that AT is not expired or revoked, but valid x x x x x x x

only execute protected actions in presence of a valid AT x x x x x x x

identify entity linked to AT (RS) x x x x 0 0 0

check if authorization_details fit to protected resources of RS 0 0 0 0 0 [x] 0

only return explicitly granted resources x x x x x x 0

UTF-8-encode the resource response x x 0 0 0 0 0/(x)

use Content-type: application/json (RS) x x 0 0 0 0 0/x

include x-fapi-interactio-id response header x x # # 0 0 0

not dismiss requests with valid x-fapi-customer-ip-address header (RS) x x # # 0 0 0

include x-fapi-auth-dater header  in resource request [x] [x] # # 0 0 0

include x-fapi-customer-ip-address header  in resource request [x] [x] # # 0 0 0

include x-fapi-interaction-id header in resource request [x] [x] # # 0 0 0

User Contact Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

appropriate level of user authentication x x 0 0 0 0 x 

specific user content to requested scope x x 0 0 0 0 [x]

clarify granting long-term access to end-user (x) (x) 0 0 (x) 0 (x)

offer consent revocation mechanism for access and refresh token (x) (x) 0 0 0 0 (x)

Strong Crypto Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

strong client secret x x x x x x x

strong AT, RT and auth. codes x x x x x x 0

use PS256 or ES256 algorithms for JWS 0 x x x 0 0 #

not using algorithms using RSASSA-PKCS1-v1_5 0 (x) (x) (x) 0 0 #

not using none for jws 0 x x x 0 0 x

not using RSA1_5 algorithm for jwe 0 x x x 0 0 #

not using same kid for more than one key in a jwk 0 (x) 0 0 0 0 0

but if use kty, use or alg as additional identification 0 x 0 0 0 0 0

adhere to JWT BCP 0 0 x x 0 0 0

implement ECDSA in a deterministic way 0 0 (x) (x) 0 0 [x]

use rs256 ( representing RSASSA-PKCS-v1_5) 0 # 0 0 0 0 (x)

use ES256 0 x x x 0 0 x

use rsa1_5 0 # 0 0 0 0 x

rsa keys with min. length of 2048 bit x x x x 0 0 0

ecc keys with min. length of 160 bit x x x x 0 0 0

Ensurance of secure transmission Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

encrypt all communication with TLS x x x x (x) x/(x) x

when using TLS 1.2: TLS-compliance with BCP195/RFC7525 x x x x [x] [x] 0

use TLS version 1.2 or later x x x x [x] [x] [x]

perform TLS server certificate checks x x x x [x] x x

assure that connections cannot be downgraded (endpoints used by web browsers) [x] [x] x x 0 0 0

for TLS versions below 1.3 (meaning TLS 1.2) only use four specified cipher suites 0 x x x 0 0 0

use the dhe cipher suites with key lengths longer than 2048 bits 0 x x x 0 0 0

use DNSSEC on all endpoints [x] [x] (x) (x) 0 0 0

serve jwks uri endpoints over tls 0 x x x 0 0 0

Enforcement of Security Best Practices Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

not accept previously used auth. Codes x x x x x x (x)

issue bearer tokens with lifetime of < 10min (x) (x) 0 0 [x] [x] (x)

use refresh tokens for longer access, instead of long-langsting access token (x) (x) 0 0 [x] [x] [x]

return standard-conforming token responses x x 0 0 x x x

return list of granted scopes in token response, when token request through frontchannel x x 0 0 [x] (x) [x]

support OIDC Discovery x x x x 0 0 x 

support OAuth authorization metadata [x] [x] x x [x] [x] 0

no other distribution of discovery metadata x x 0 0 [x] # 0

implemetation of CSRF protection x x 0 0 x x x

use jwks uri endpoints for publishing public keys 0 (x) 0 0 0 0 x

not using x5u and jku JOSE headers 0 (x) 0 0 0 0 x

use PKCE with S256 code challenge method x x x x 0 x/(x) 0

include and check iss parameter in auth response to prevent mixup attacks 0 [x] x x 0 0 x

use refresh token rotation 0 0 [x] [x] [x] (x) 0

support refresh tokens rotation 0 0 x x [x] (x) 0

Misc Bas. 1.0 Adv. 1.0 Bas. 2.0 Adv. 2.0 2.0 2.1 1.0

use certified FAPI-implementations (x) (x) 0 0 0 0 0

strong access control to logs (x) (x) 0 0 0 0 0

native apps follow BCP212/RFC8252 x x 0 0 0 x 0

not support Private-use URI Scheme Redirection (native Apps) x x 0 0 0 # 0

not supprot Loopback Interface Redirection (native Apps) x x # # 0 # 0

support Claimed https Scheme URI Redirection (native Apps) x x 0 0 0 (x) 0

Figure B.3: Second half of the complete Comparison of the FAPI 1.0, 2.0, OAuth 2.0,
2.1 and OIDC. Key: 0 = not mentioned; # = explicitly not permitted;
[x] = may/can support // named; (x) = should support; x = must
support.





C Setup Code of the oxd Client API

FROM ubuntu:18.04
ENV DEBIAN_FRONTEND noninteractive
EXPOSE 8443

# https://www.gluu.org/docs/oxd/install/
ENV OXD_SERVER_HOME=/opt/oxd-server

RUN apt-get update && apt-get upgrade -y
RUN apt-get install -y --no-install-recommends \

wget\
bash \
unzip

# install java deps
RUN apt-get install openjdk-8-jre -y --no-install-recommends

# install oxd-server
WORKDIR $OXD_SERVER_HOME
RUN wget https://ox.gluu.org/maven/org/gluu/oxd-server/4.2.1.Final/oxd-server-4.2.1.Final-

distribution.zip -O tmp.zip
RUN unzip tmp.zip
RUN rm tmp.zip
COPY oxd-server.yml $OXD_SERVER_HOME/conf

WORKDIR $OXD_SERVER_HOME/bin
RUN chmod +x oxd-start.sh
COPY docker-entrypoint.sh $OXD_SERVER_HOME/bin/
ENTRYPOINT ["./docker-entrypoint.sh"]

Listing C.1: Dockerfile for oxd Client API.





D Additional attacks (Security Catalog)

D.1 General Attacks

D.1.1 Code Injection and Input Validation

Code injection and input validation attacks are described in [13]. Code injection
attacks take advantage of unsanitized input variables to change the application logic.
Attackers can access data on the device or cause other problems, such as denial of
service.

Sanitization and validation of every value send to AS and client prohibits code
injection. A special focus should be the state parameter and redirect_uri pa-
rameter.

Countermeasure by FAPI 1.0 FAPI 1.0 does not define protection measures against
code injection.

Countermeasure by FAPI 2.0 FAPI 2.0 does not define protection measures against
code injection.

D.1.2 TLS Terminating Reverse Proxies

The threat of TLS terminating reverse proxies is described in [10]. Often, applica-
tion servers are hidden behind reverse proxies. These terminate the TLS connection.
Reverse Proxies that transmit every header coming from the outside are vulnerable
to attackers sending fake header values. If these values reach the protected appli-
cation server, the attacker can circumvent security protection measures, such as IP
whitelisting.

To protect against the risks of TLS terminating reverse proxies, the proxies have to
sanitize any receiving requests and check the security-relevant header values. Fur-
ther, it is essential to verify the authenticity of the communication since attackers
with access to the internal network might bypass further security measures. Ad-
ditionally, there must be protection against eavesdropping, injection as well as the
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replay of messages in place for any communication between proxies and applications
servers.

Countermeasure by FAPI 1.0 FAPI 1.0 enforces the protection of all communica-
tion by using TLS.

Countermeasure by FAPI 1.0 FAPI 2.0 also enforces the protection of all commu-
nication by using TLS.

D.1.3 Obtaining Client Secrets

The threat of an attacker obtaining client secrets is described in [15]. An attacker
can replay or obtain access tokens, refresh token and authorization codes to access
the victim’s resources when gaining knowledge of the client secret. Client secrets can
be obtained from the source code of an open source project or reverse-engineered
from a binary.

To mitigate this client secrets should only be issued for confidential clients with a
sufficient security level. Further, client secrets should be revocable and deployment-
specific. In the latter case, the secret can be stolen from a web server or a na-
tive application. Therefore, web server protection measures should be applied or
respectively the client secrets can be secured in the local storage of the native
app.

Countermeasure by FAPI 1.0 FAPI 1.0 does not specifiy explicit protection mea-
sures against this threat.

Countermeasure by FAPI 2.0 FAPI 2.0 does not specifiy explicit protection mea-
sures against this threat.

D.1.4 Timing Attack

Timing attacks are described in [7]. Timing attacks originate in successful and
unsuccessful decryption and signature verification execution times differing in length.
A successful timing attack can facilitate breaking a cipher due to a reduction of the
effective key length.

Simple mitigation against timing attacks is to not stop the process, as soon as an er-
ror occurs, but to continue until everything is processed.
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Countermeasure by FAPI 1.0 The FAPI does not specify an explicit counter-
measure against timing attacks, but the use of long keys can harden the attack
surface.

Countermeasure by FAPI 2.0 FAPI 2.0 does also not specify a countermeasure
against timing attacks, but the use of keys with a long length can make timing
attacks harder.

D.1.5 Other Cryptography Related Attacks

The threat of cryptography-related attacks is described in [7] and [23]. Using JWTs
comes with the risk of different crypto attacks. Therefore, implementers must be
informed about the risks of using certain encryption and signature algorithms and
further weaknesses specified in the JWT specification. JWS and JWE can only fulfill
their security intentions if implemented securely.

The FAPI specifies certain security measures, to ensure a secure use of JWTs, JWSs,
JWE. Therefore, only algorithms specified by the FAPI shall be used. In this con-
text, the distribution of public key material is important. This can be implemented
through the use of TLS-protected jwks_uri endpoints by ASs and clients. Alter-
natively, client can make use of the jwks parameter. When using JWK sets, keys
should not have the same kid. If they do have the same, other attributes should be
used to differentiate between keys. Otherwise, selecting the correct key to verify a
signature is not possible.

Countermeasure by FAPI 1.0 The advanced profile dictates serving jwks_uri over
TLS if used as recommended. Further, JWK sets are not recommended to have keys
with the same kid. The advanced profile also specifies secure algorithms that must
be used for JWE and JWS.

Countermeasure by FAPI 2.0 In the second FAPI version, the baseline profile
specifies algorithm considerations used for JWTs.

D.1.6 Abuse of poorly configured TLS (and DNS) deployment

The importance of a secure TLS and DNS deployment is described in both FAPI
1.0 profiles [22] [23].

To prevent any kind of information disclosure and manipulation TLS must be used.
TLS is only able to ensure confidentiality and integrity if used correctly and securely
at the time. Therefore, TLS server certificate checks and the use of an (at the
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time) secure cipher suite are essential. To prevent DNS spoofing attacks, the use of
DNSSEC on all endpoints is recommended.

Countermeasure by FAPI 1.0 The FAPI 1.0 baseline profile enforces the use
of TLS 1.2 or later and the performance of TLS server certificate checks. The
TLS BCP [10] must be followed. Preloaded HTTP strict transport security poli-
cies are recommended to protect against TLS STripping attacks. DNSSEC should
be used on all endpoints. The advanced profile additionally dictates explicit ci-
pher suites that must be used with TLS 1.2 and defines certain key lengths neces-
sary.

Countermeasure by FAPI 2.0 FAPI 2.0 explicitly specifies network layer protec-
tion measures, such as the mandatory use of TLS, its BCP, and the performance of
TLS server certificate checks, and it further permits certain cipher suites and key
lengths. The use of DNSSEC is recommended and protection measures against TLS
stripping attacks are essential.

D.2 Attacks on Resource Owners

D.2.1 Resource Owner Impersonation at the Authorization Server

Resource owner impersonation at the authorization server is described in [15]. At-
tackers can impersonate the ROs and gain unauthorized access to their protected
resources by simulating the necessary requests with the AS if the user authentica-
tion mechanism is not interactive or the flow is split up on different pages. RO
impersonation is only executable by clients on the victims device (UA or native
app).

Countermeasures include the use of interactive user authentication, e.g., through
captchas, one-time secrets, or the combination of password authentication and con-
sent. Additionally, the AS can message the ROs when access is granted in their
names.

Countermeasure by FAPI 1.0 FAPI 1.0 does not explicitly defines protection mea-
sures against RO impersonation at the AS.

Countermeasure by FAPI 2.0 FAPI 2.0 does not explicitly defines protection mea-
sures against RO impersonation at the AS.
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D.2.2 Client Impersonating Resource Owner at the Resource Server

The threat of a client impersonating a RO at the RS is described in the [10]. Based
on the ROs identity, RSs can make access control choices. The ROs identity can be
transmitted in the sub claim by an ASs token introspection response. A client that
registers is able to register a chosen client_id can probably choose the same sub
value as an end-user. This can lead to confusion a token received through a successful
client credentials grant can be misunderstood as one granted by the respective user
since the ids are similar.

Countermeasures to this kind of attack include limiting the clients power for choosing
their ids. Additionally, it must be checked by the AS which access token was granted
by an RO and which by a client.

Countermeasure by FAPI 1.0 In FAPI 1.0, the AS explicitly gathers user content
and issues ID tokens that include a respective sub value.

Countermeasure by FAPI 2.0 FAPI 2.0 does not specify explicit countermeasures
against client impersonating RO at the RS.

D.2.3 End-user Credentials Phishing

End-user credential phishing attacks are described in [13] and [15]. Redirect-based
protocols can make the user insensitive regarding the severeness of them being redi-
rected and prompted to enter their credentials. Attackers can start phishing attacks
to obtain the credentials of the end-user. Therefore, attacker clients can use embed-
ded or compromised browsers to change the visual trust mechanisms of the autho-
rization website. Thus, end-users might not be able to tell the difference between
an original website and a malicious one and enter their credentials into the faked
website.

Generally, OAuth clients should never deal with end-user credentials, and hence de-
velopers should not collect user authentication information. Additionally, end-users
can be informed about this kind of phishing and teach them to look for authenticity
clues that can be provided by the client. Further, client applications can be verified
before being published on a controllable market. Additionally, ASs require TLS on
all endpoints where user interaction happens.

Countermeasure by FAPI 1.0 The FAPI 1.0 does not specify explicit protection
measures against end-user credentials phishing, except the use of TLS for all end-
points.
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Countermeasure by FAPI 2.0 The FAPI 2.0 does not specify explicit protection
measures against end-user credentials phishing, except the use of TLS for all end-
points.

D.3 Attacks on Resource Servers

D.3.1 Access Token Redirect

The threat of an access token redirect is described in [7], [15] and [14]. Tokens,
issued for a certain RS can successfully be used at another RS by other RSs or
clients. Access tokens issued for access to one resource can also be used by an
attacker to access another resource.

This can be prevented by audience and scope restricting the access token, e.g., by
adding the resource’s identifier/ the correct token recipient as the audience. Access
tokens should be limited to only one specified RS.

Countermeasure by FAPI 1.0 The advanced FAPI 1.0 profile mandates the use of
sender-constrained access tokens.

Countermeasure by FAPI 2.0 In both FAPI 2.0 profiles, sender-constrained access
tokens must be supported.

D.3.2 Token replay

Token replay attacks are described in [14]. Attackers can successfully reuse an
already used single-use token at the RS.

To mitigate token replay, the token lifetime is limited, and confidentiality protection
is implemented for communication between the client and RS or AS. Further, clients
prove the RS identity and check the TLS certificate chain. A timestamp included
in the token can also reduce the attack surface. Complete mitigation is achieved by
recording whether the token was already redeemed or not.

Countermeasure by FAPI 1.0 FAPI 1.0 recommends access tokens that are only
valid for ten minutes. Further, RSs must check the token lifetime and revocation
state. All interactions must be protected via TLS, and certificate checks are manda-
tory.
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Countermeasure by FAPI 2.0 FAPI 2.0 also enforces TLS usage and certificate
checks. Further, access tokens are sender-constrained and must be validated regard-
ing expiration and revocation.

D.3.3 Replay of Authorized Resource Server Requests

Replay attacks of authorized resource server requests are described in [15]. Autho-
rized resource requests can be replayed at the RS to access user data.

To mitigate this attack, TLS must be used and the RS can enforce signed requests, in-
cluding nonces and timestamps, to detect this form of a replay attack.

Countermeasure by FAPI 1.0 FAPI 1.0 enforces the usage of TLS.

Countermeasure by FAPI 2.0 FAPI 2.0 enforces the usage of TLS. Further, the
draft names the consideration of signing resource requests and responses. To this
date, no mechanism has replaced the open question.

D.3.4 Leak of Confidential Data in HTTP Proxies

The threat of leaking of confidential data in HTTP proxies is described in [15].
Caches and proxies can fail to protect confidential data in absence of HTTP authen-
tication headers, making it publicly accessible.

To mitigate this, RSs and clients can use Cache-control headers, if not using HTTP
authentication headers. Further, token scope and lifetime should be reduced to
decrease the impact of stolen tokens.

Countermeasure by FAPI 1.0 In the FAPI 1.0 access token lifetime is restricted
to ten minutes. In the advanced profile, sender-constrained access token are manda-
tory.

Countermeasure by FAPI 2.0 In FAPI 2.0, sender-constrained access tokens must
be supported in both profiles.
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D.3.5 Access Token Leakage through a compromised Resource Server

The threat of access tokens leakage through a compromised RS is described in [10].
Attackers successfully compromising a RS, have then access to not only all resources
but also gain access to access tokens, that are valid at other RSs.

To limit the risk of stolen access token replay at other RSs, sender-constrained
access token can be utilized, as well as audience restriction of them. Further, ac-
cess tokens have to be treated and stored as other credentials, e.g., not logging
them.

Countermeasure by FAPI 1.0 FAPI 1.0 recommends strict access control to logs.
The advanced profile mandates the use of sender-constrained access token.

Countermeasure by FAPI 2.0 In FAPI 2.0, supporting sender-constrained access
tokens is mandatory in both profiles.

D.3.6 Token manufacture/modification

The threat of modified tokens is described in [14] and [7]. Tokens can be manipu-
lated or forged to, e.g., change their validity period or widen their access. When using
token-based authentication, RSs could wrongly grant access.

To prohibit token modification tokens can be sent over a TLS-protected channel.
Only protecting the token using TLS does not mitigate the attack performed by
malicious clients. Mitigations for token modification and manufacture include pro-
viding a MAC or digitally signing the token (by the AS). In the latter case, the
signature must be validated by the client, or it is effectless. Another mitigation
is to include a reference to authorization information in the token. This requires
additional interaction and protection of the reference.

Countermeasure by FAPI 1.0 In FAPI 1.0, all communication must happen over
a TLS-protected channel. Further, token introspection can be used, and the specifi-
cation also notes the possibility of employing structured access token, such as signed
JWTs.

Countermeasure by FAPI 2.0 FAPI 2.0 also demands the use of TLS for all com-
munications.
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D.3.7 Session Fixation

Session fixation is described in [23]. Any measures protecting the obtaining and
use of access tokens by attackers are obsolete if the API executes protected actions
without checking if the necessary privilege is present.

Therefore, any protected action must be only executed in the presence of a valid
access token.

Countermeasure by FAPI 1.0 FAPI 1.0 defines rules for RSs with FAPI endpoints.
They must verify access tokens and only return the correct resources, matching the
given scope and entity belonging to the access token.

Countermeasure by FAPI 2.0 FAPI 2.0 also defines RS regulations, such as the
mandatory verification of access tokens and the return of resources that fit entity
and the granted scope.

D.3.8 Access Token Phishing by Counterfeit Resource Server

Access token phishing attacks by counterfeit resource servers are described in [15] and
[10]. Attackers can impersonate a RS, that accepts access token issued by a specific
AS to phish valid access tokens. The victim client that sends the access token is
not bound to only one RS, but instead receives the RS URL at runtime. When the
fake RS receives a valid access token, the attacker can redeem that themselves at
the honest RS.

Countermeasures for this kind of attack, include the client not sending requests with
access token to unknown RS. Therefore, AS metadata can be used to provide a list
of supported and trust-worthy RSs, or the AS can include known RS in the token
response. This method is not primarily recommended since it relies on the client and
many clients fail to implement security measures correctly. Another countermeasure
is the association of the RSs endpoint URL with the respective token. Further,
the RS might authenticate the client and only accept tokens bound to that client.
Sender-constrained access token can, e.g., be implemented through MTLS, DPoP.
Restricting the token scope to one defined RS can help reduce the impact of the
attack. For the audience restriction of access token, the AS binds a the access token
to a certain RS, which then validates the audience and stops the flow, if it does not
match.

Countermeasure by FAPI 1.0 The advanced profile enforces the use of certificate-
bound access tokens. Further, the distribution of AS metadata is mandatory.
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Countermeasure by FAPI 2.0 Both profiles must support sender-constrained ac-
cess tokens. Further, the distribution of discovery metadata is mandatory.

D.4 Attacks on Deprecated Flows

D.4.1 Token Substitution

Token substitution attacks are described in [7]. The swapping of any kind of token
by attackers is called token substitution. A known attack of this class is called the
“cut and paste” attack, in which the attacker swaps a token of one session and copies
it into the HTTP message for another one. The implicit flow and the hybrid flow
with the response types code token and code id_token token are vulnerable to
this kind of attack without the use of respective security measures. Clients need the
ability to check that tokens were issued for itself. One mitigation, provided by OIDC
is the use of certain claims in the ID token. With an ID token, the issuer, subject,
authorized party and the hashes of access token and authorization code are signed,
enabling clients to check for token substitution attacks.

Another attack vector in this context is the reordering of messages. This is mitigated
by the HTTP binding, specified by OIDC, in which the token response is bound to
the respective token request by the message order since TLS is used. Alternatively,
ID tokens including a hash of the authorization code can be included in both token
request and response.

Countermeasure by FAPI 1.0 In FAPI 1.0, the implicit grant is not accepted. In
the baseline profile, the use of the hybrid flow is also not intended. According to
Fett et al. [59], the FAPI 1.0 profile is essentially an authorization code flow. In
the advanced profile, the Hybrid flow with the response types code token and code
id_token token is not allowed. The audience is defined in the ID token, and TLS
is used for all communication.

Countermeasure by FAPI 2.0 In FAPI 2.0, the implicit grant and the hybrid flow
are not accepted. The audience is defined in the ID token, and TLS is used for all
communication.

D.4.2 Server Response Disclosure

The threat of server response disclosure is described in [7]. Authorization/authenti-
cation responses can contain sensitive information about the client and the authen-
tication that should not be disclosed.
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To mitigate server response disclosure, the authorization code flow can be used
(response type code), in which only the code is returned in the authorization re-
sponse. Further, TLS is used and the client is authenticated. In different flows,
access tokens or ID tokens are transmitted in the server response, which is redi-
rected through the UA exposing them. Another possible mitigation is the use of
signed and encrypted responses, using the client’s public key or a Symmetric secret
as an encrypted JWT.

Countermeasure by FAPI 1.0 FAPI 1.0 uses the authorization code flow or the
hybrid flow with response type code id_token. When the hybrid flow is used, the
advanced profile recommends supporting signed and encrypted ID tokens. Generally,
TLS and client authentication for confidential clients are mandatory.

Countermeasure by FAPI 2.0 FAPI 2.0 only accepts the authorization code flow
and confidential clients that are authenticated. The use of TLS is mandatory.

D.4.3 (Accidental) Exposure of Passwords at Client Site

The threat of exposure of passwords at client site is described in [15]. Passwords
can be exposed at client site, by employees or attackers.

To mitigate this, the use of other flows is recommended. If not possible, the
use of digest authentication and the obfuscation of passwords in logs are recom-
mended.

Countermeasure by FAPI 1.0 FAPI 1.0 implies the use of the hybrid flow or the
authorization code grant.

Countermeasure by FAPI 2.0 FAPI 2.0 explicitly forbids the use of the RO pass-
word credentials grant.

D.4.4 Eavesdropping of User Passwords in Resource Owner Password
Credentials Grant

The threat of eavesdropping on user passwords is described in [15]. User Password
can be eavesdropped on by attackers when sent to the AS.

To prohibit the eavesdropping of an end-user’s password, TLS must be used to
ensure confidentiality and alternative authentication methods can be used, e.g., such
as MACs.
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Countermeasure by FAPI 1.0 FAPI 1.0 implies the use of the hybrid flow or the au-
thorization code grant. Furthermore, TLS is always used.

Countermeasure by FAPI 2.0 FAPI 2.0 explicitly forbids the use of the resource
owner password credentials grant and enforces TLS for all connections.

D.4.5 Misuse of Access Token to Impersonate Resource Owner in
Implicit Flow

The threat of misusing an access token to impersonate a resource owner is described
in [13]. OAuth does not specify a way how public clients that uses the implicit flow
can detect whether the access token on hand was issued for them or another client.
In an attack scenario, in which the attacker has already obtained an access token,
e.g., through phishing, they can impersonate the user they stole the token from.
Therefore, they switch the access token received in the authorization response with
the stolen token and forwards the response to the honest client. In the implicit flow,
the provider of the access token can not be assumed to be the actual RO. Every
client who does, is vulnerable to RO impersonation, which leads to information
exposure and enables the attacker to access the protected resources as if they are
the end-user.

The implicit flow should not be used for end-user authentication to a client, at least
not without additional security measures in place. Sender-constrained access token
can help to gain knowledge for whom the token was issued.

Countermeasure by FAPI 1.0 FAPI 1.0 implies the use of the hybrid flow or the
authorization code grant. Furthermore, sender-constrained access tokens have to be
used in the advanced profile.

Countermeasure by FAPI 2.0 FAPI 2.0 explicitly forbids the use of the implicit
grant. Furthermore, sender-constrained access tokens have to be supported in both
profiles.

D.4.6 Credential Leakage via Browser History

Credential leakage via browser history is described in [10] Credentials, such as au-
thorization codes and access tokens can leak through the browser history, if an
attacker has physical access to the respective device. This results in authoriza-
tion code replay attacks as well as in unauthorized access to protected resources.
Authorization codes can leak via the browser history when the redirect to the redi-
rection endpoint contains the code value. Access tokens can leak via the browser



D.4 Attacks on Deprecated Flows 103

history when sent in query parameters, either through directly trying to access a
page or through the redirect to the redirection endpoint in case of the implicit
grant.

Mitigations include the use of authorization code replay prevention and the use
of the form post response mode, as an alternative to redirecting. Additionally,
access tokens should not be transmitted as a query parameter. Therefore, the
use of the authorization code grant and the form post response mode are recom-
mended.

The impact of this attack can be limited through the reduction of the token lifetime.
Further, responses should be made non-cacheable.

Countermeasure by FAPI 1.0 In FAPI 1.0, access tokens must not be sent in query
parameters, but as HTTP headers. The authorization code grant or the hybrid
flow with the response type code id_token are supported. Authorization codes are
single-use and access token have a lifetime of at most 10 minutes.

Countermeasure by FAPI 2.0 Authorization codes are single-use, if this is not
possible, their lifetime should be restricted to one minute. Only the authorization
code grant is supported. Access tokens must not be sent in query parameters but
as HTTP headers.

D.4.7 Obtaining User Passwords from Authorization Server Database

The threat of obtaining user passwords from authorization server databases is de-
scribed in [15]. When the AS stores username-password combinations in a database,
attackers can access them through successful SQL injection attacks.

To mitigate the leakage of all username-password combinations, following the cre-
dential storage protection best practices is mandatory.

Countermeasure by FAPI 1.0 Since, the FAPI 1.0 does not use the RO password
credentials grant, this attack is not applicable.

Countermeasure by FAPI 2.0 FAPI 2.0 forbids the use of the RO password creden-
tials grant, so this attack is not applicable on the authorization code flow.
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D.4.8 Client Obtains Scopes without End-User Authorization

The threat of a client obtaining scopes without end-user authorization is described
in [15]. In the Resource owner password Credentials grant, the end-user only
communicates with the client. Therefore, the user has no capability of limiting
the token scope, without the client being able to unnoticeably circumvent their
wishes.

Countermeasures include choosing a different flow, the AS always restrict the access
token scope and informs the end-user about the granted access.

Countermeasure by FAPI 1.0 Since the FAPI 1.0 does not use the RO password
credentials grant, this attack is not applicable. Further, the end-users must be
informed in detail about the grant they are accepting.

Countermeasure by FAPI 2.0 FAPI 2.0 forbids the use of the RO password creden-
tials grant, so this attack is not applicable on the authorization code flow.

D.4.9 Client Obtains Refresh Token through Automatic Authorization

The threat of a client obtaining a refresh token through automatic authorization is
described in [15]. Since end-users only communicate with clients, long-term refresh
token can be obtained by the client without user consent.

It is recommended to utilize different flows. Otherwise, the AS can prohibit the
issuing of refresh tokens, except for trusted clients and inform the ROs about issued
refresh token.

Countermeasure by FAPI 1.0 Since the FAPI 1.0 does not use the RO password
credentials grant, this attack is not applicable.

Countermeasure by FAPI 2.0 FAPI 2.0 forbids the use of the RO password creden-
tials grant, so this attack is not applicable on the authorization code flow.

D.4.10 Access token phishing

The threat of a access token phishing is described in [23]. Access token phishing is
another common attack that is more likely to succeed when flows are used which
transport tokens in the front channel.



Countermeasure by FAPI 1.0 FAPI 1.0 describes a variety of mechanisms miti-
gating it. One of these mechanisms is the use of flows that do not exchange access
tokens in the front channel. Further, comparing preregistered redirect_uris can
help prevent this kind of attack. Furthermore, certificate-bound access token, e.g. by
using MTLS, make phished tokens unusable, since they are bound to the victim TLS
certificate, which is not in possession of the attacker.

Countermeasure by FAPI 2.0 FAPI 2.0, also enforces the usage of the autho-
rization code flow, in which access tokens are sent in the backchannel. Sender-
constrained access tokens must be supported in both baseline and advanced profiles.
However, pre-registered redirect URIs are not necessary, since they are included in
the PAR.
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