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Abstract

In this thesis, the currently most relevant template engines are enumerated and
intentionally implemented in a manner vulnerable to template injection in a play-
ground with various features. Based on this, new error polyglots are created that
surpass the known ones in brevity and template engine coverage. Furthermore, a
new type of template injection polyglots is constructed, called non-error polyglots.
These non-error polyglots ensure that no error is thrown that might be caught, but
that a template engine renders them modified. To make these polyglots easy to
use for template injection detection and template engine identification, a web page
with an interactive table is created. Furthermore, a new type of template injection
scanner (TInjA) is created, which significantly outperforms the previous scanners
in several categories, such as number of requests sent and identified template injec-
tions. This outperformance is mainly due to the newly created polyglots. Finally,
81,937 URLs from 69 apex domains of the Tranco Top 1000 list are scanned for
template injections with TInjA. During the analysis of the scan results, a new “hy-
brid approach” is developed. This approach combines the speed and effectiveness of
novel polyglots with the very low false positive probability of a template expression
tailored to a specific template engine.
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1 Introduction

This chapter serves as an introduction to the master’s thesis. First, we delve into the
motivating factors behind the creation of this thesis. Subsequently, we provide a con-
cise review of the relevant prior research, setting the stage for our unique contribu-
tions. Lastly, we present an outline of the thesis structure.

1.1 Motivation

In an ever-evolving landscape of cyber threats, the discovery of novel attack vec-
tors and exploitation techniques remains a persistent challenge. The need to com-
prehensively test for these vulnerabilities is paramount in order to safeguard the
continuously expanding attack surface. Among these threats, template injections
stand out as a significantly underestimated vulnerability within web applications.
Despite their potential to compromise security, their significance has been over-
looked. Over recent years, a consistent pattern has emerged, with approximately
30 template injection Common Vulnerabilities and Exposures (CVEs) being dis-
closed annually. Remarkably, a majority of these vulnerabilities grant attackers the
ability to achieve Remote Code Execution (RCE), often without the need of au-
thentication. The exploitation of template injection vulnerabilities necessitates a
multi-step process. Initially, it is imperative to detect instances where user input
is processed by a template engine. Subsequently, the specific template engine in
use must be identified. At this juncture, the application of polyglots proves instru-
mental in facilitating efficient testing. However, existing polyglots exhibit inherent
limitations. Some are concise but confined to a narrow spectrum of commonly used
template engines. Others offer broader coverage but at the expense of length and
complexity. This master’s thesis addresses the shortcomings of established polyglots
by introducing novel polyglots that overcome the limitations of the existing ones.
In addition, the thesis introduces TInjA—a novel template injection scanner that
outperforms its predecessors in terms of efficiency. TInjA harnesses the power of the
newly developed polyglots to conduct scans that are considerably faster and more
effective.
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1.2 Related Work

Template injection vulnerabilities were investigated for the first time in 2013. The
mustache-security project analyzed several JavaScript frameworks and template en-
gines regarding their security and defined security criteria [3].

In 2015, it was shown that template injections can be executed not only client-side
in the browser, but also server-side, thus achieving RCE [6]. RCE payloads have
been developed for several template engines, even working in the sandbox mode of
the template engine, which is a restricted mode for security reasons. The three-step
template injection methodology was also presented.

In 2018, new template injection polyglots were created, which have a higher coverage
of template engines than the previous polyglots [8]. These polyglots were then used
to create a scanner that is more efficient at detecting template injection possibilities
than the previous scanners.

In 2021, a short research paper on an SSTI countermeasure using instruction set ran-
domization was published [13]. Using the PHP template engine Twig as an example,
it promises to be able to prevent SSTI without performance loss.

In 2022, an evaluation of how well different web application security scanners are able
to find different injection vulnerabilities was published [1]. In the case of SSTI, none
of the scanners evaluated were able to detect the vulnerability.

In 2023, a paper was published on how to automatically bypass a sandbox to achieve
RCE in the case of SSTI [14]. The tool created for this purpose was also pub-
lished1.

In addition, new sandbox escapes have been published over the years [5][4][9].

1.3 Contribution

This thesis presents a comprehensive set of six distinct contributions, each ad-
dressing important aspects within the domain of template injection vulnerabili-
ties:

Template Injection Playground A novel template injection playground is developed
and published. Unlike existing playgrounds this playground exhibits notable
advancements. It strategically focuses on integrating only the most relevant
template engines after careful analysis. In addition, the playground offers a
wide range of implemented template engines. A special feature is the config-
urable behavior, which allows users to activate various countermeasures, for
example.

1https://github.com/seclab-fudan/TEFuzz/

https://github.com/seclab-fudan/TEFuzz/
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Novel Improved Polyglots Building on the foundation laid by the polyglots pub-
lished in 2018 [8], this research identifies opportunities for refinement. The
result culminates in the creation of polyglots that are not only shorter, but
also offer broader coverage. An innovative type of template injection is in-
troduced that is characterized by a departure from error-inducing behavior.
These “non-error” polyglots bring two benefits: immunity to scenarios where
errors are common, and the ability to identify template engines in a signifi-
cantly more efficient manner.

Template Injection Table An interactive Template Injection Table is created and
published. Enriched with the novel and efficient polyglots and expected tem-
plate engine responses, this resource accelerates the detection of template in-
jection possibilities and the identification of template engines used.

TInjA Template Injection Scanner TInjA, an innovative template injection scan-
ner, is developed and published. Characterized by the use of novel and efficient
polyglots, TInjA surpasses its predecessors in several dimensions. It excels in
detecting a greater number of template injection possibilities, exhibits im-
proved accuracy in identifying template engines, and significantly reduces the
number of requests and time required to perform these tasks.

Scanner Performance Evaluation A comparative evaluation is conducted that in-
cludes TInjA and various other template injection scanners. This evaluation
unfolds across two different template injection playgrounds and an SSTI vul-
nerability from the scanner evaluation published in 2022 [1]. The results will
provide insight into the current state of scanner effectiveness.

Large-Scale Template Injection Scanning This will be followed by a scan of some
of the world’s most popular domains using TInjA. This initiative aims to
identify the challenges of performing large-scale template injection scans while
proposing viable solutions.

1.4 Organization of this Thesis

Chapter 2 provides the necessary foundations needed throughout this thesis.

In Chapter 3 the Template Injection Playground is introduced, which can be used to
test a variety of template engines and is important for the following chapters. The
selection of template engines is discussed in detail. This is crucial for the creation
of new and improved polyglots.

Chapter 4 discusses the creation of the novel polyglots, which are shorter and cover
a wider range of template engines. In particular, a new type of template injection
polyglots is introduced. These “non-error” polyglots have significant advantages over
the “error” polyglots commonly used so far. Further, the Template Injection Table
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is introduced, which accelerates the execution of the template injection methodol-
ogy.

Chapter 5 introduces the template injection scanner TInjA. TInjA uses the novel
polyglots to quickly and efficiently detect template injection possibilities and even
identify the template engines used. The use of polyglots to identify template engines
is a novel approach for scanners.

In Chapter 6 a comparative evaluation is conducted that includes TInjA and vari-
ous other template injection scanners. This evaluation unfolds across two different
template injection playgrounds and an SSTI vulnerability from the scanner evalua-
tion published in 2022 [1]. In addition to the number of detected template injection
possibilities and identified template engines, other metrics such as the duration and
number of requests are also measured.

In Chapter 7, a large-scale template injection scan is performed. For this purpose,
TInjA is used to scan some of the world’s most popular domains. Problems encoun-
tered during the scan as well as causes for false positives are identified and solutions
are presented.

Chapter 8 discusses the key insights and main contributions of this thesis.



2 Background

This chapter provides the necessary background needed throughout this thesis in
four sections. The first section describes what template engines are and how they
can be used. The second section explains the template injection vulnerability class
that can be exploited by an attacker if a template engine is used insecurely. The
third section explains the template injection methodology that can be used to find
and exploit template injection vulnerabilities. The fourth section discusses several
countermeasures that can reduce the risk of a template injection or, in some circum-
stances, prevent it altogether.

2.1 Template Engine

Template engines allow static template files or strings containing template language
to be used in web applications. The function of a template engine is to dynamically
interpret the template language at runtime and generate an output format, such as
HTML, from the template. Template engines often have features similar to a high-
level programming language, such as variables, functions, loops, conditions, and
access to files. The processing flow of a template engine is shown in Figure 2.1. The
template engine interprets a template containing template statements and combines
it with a data model, such as a relational database or other data source. The result
is a document or part of a document.

This simplifies the programming of web applications because data can be dynam-
ically read from databases and the design principle of separation of concerns can
be achieved. This allows the use of the MVC (Model-View-Controller) pattern or
a similar approach where the appearance of the web application is independent of
the data to be used. The MVC approach allows designers to create templates with
placeholders and developers to create the logic that replaces the placeholders. This
makes the work of both designers and programmers easier and more efficient. Many
web frameworks that simplify the programming of dynamic web applications use a
third-party or even custom template engine by default. In addition, template en-
gines can often be easily integrated into an existing project. As a result, template
engines are widely used in web applications.

The functionality and syntax of different template engines can be very similar, but
also very diverse. Some want to be all-inclusive solutions and support loops, condi-
tions, expressions, filters, and much more (e. g., AngularJS). Others have a logic-less
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name =
"Kirlia"

Template Engine

...
<body>
  Hello       
  {{name}}
</body>

Template

Data

...
<body>
  Hello       
  Kirlia
</body>

Output

Figure 2.1: The processing flow of a template engine.

approach and do not want to integrate any logic and control flow into the templates
(e. g., Mustache). Also, depending on the template engine, the tags that enclose a
template statement vary. Commonly used are {{ statement }}, ${ statement },
and <%= statement %>. Integrating a JavaScript template engine into a web appli-
cation can be done in two different ways. Either client-side by integrating it into the
web page with a “script” tag, or server-side by using a back-end JavaScript runtime
environment, such as Node.js. Template engines for programming languages other
than JavaScript are always server-side, since they are installed and run on a server
and cannot be included with a script tag in the web page.

2.2 Template Injection

Template injection vulnerabilities occur when user input is embedded into a tem-
plate and, thus, can manipulate or add template statements. A distinction is made
between client-side template injection (CSTI) and server-side template injection
(SSTI), depending on whether a client-side or server-side template engine is used.
When exploiting an SSTI, an attacker may be able to, among other things, execute
code on the server (remote code execution, or RCE for short), read or write arbitrary
files, or generate HTML containing JavaScript that is then executed in a victim’s
browser (cross-site scripting, or XSS for short).

When exploiting a CSTI, the template is executed by a JavaScript template en-
gine in the browser. This means RCE or reading or writing arbitrary files on the
server is not possible. However, the template engine can be instructed to generate
HTML with malicious JavaScript (XSS) or to execute JavaScript directly, for exam-
ple. This means that the only difference between CSTI and SSTI is the potential
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1 { system('whoami') }

Listing 1: Smarty template expression to run the whoami command on the server

1 <%= system("whoami") %>

Listing 2: ERB template expression to run the whoami command on the server

impact. The process for detecting and exploiting both types of template injection
is identical.

Template injection payloads can look very different depending on the template en-
gine. In the following, we will look at four different server-side template engines
as examples. Consider the whoami command, which prints the current user name
when invoked on most Unix and modern Microsoft Windows operating systems. To
achieve RCE and run whoami using Smarty, a PHP template engine, the simple
template statement shown in Listing 1 can be used. For the Ruby template engine
ERB there also exist simple template statements for RCE, as shown in Listing 2.
Other template engines, such as Jinja2 (Python) and Nunjucks (Node.js), also al-
low commands to be executed, but the template statements are much more complex
(see Listing 3 and Listing 4). This is due to the fact that they do not provide direct
command execution functionality; however, objects can be accessed in an indirect
way, which then allows commands to be executed.

2.3 Template Injection Methodology

As mentioned in Section 1.2, Kettle has established a template injection methodol-
ogy that can be used to detect and exploit template injection vulnerabilities. This
methodology consists of three main steps: Detect, Identify, and Exploit. The third
step, Exploit, can be further subdivided into the three sub-steps Read, Explore, and
Attack.

The steps of the methodology are presented in the following.

1 {{ self._TemplateReference__context.cycler.__init__.__globals__.os ⌋
.popen('whoami').read()
}}

→˓

→˓

Listing 3: Jinja2 template expression to run the whoami command on the server
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1 {{ range.constructor("return
global.process.mainModule.require('child_process').execSync('whoami')")() }}→˓

Listing 4: Nunjucks template expression to run the whoami command on the server

2.3.1 Detect

The first step is to find out if template injection is possible, in other words, if unsafe
user input is being inserted into a template. To do this, it is useful to use a template
statement that can be interpreted by as many template engines as possible. Many
template engines use {{ as opening and }} as closing tag for their statements and
a * for multiplication. Therefore, the statement {{7*7}} is often referenced, which
should be rendered as 49 by a template engine that uses this syntax. It is also
possible to make a template engine reveal itself by throwing an error. This can be
done, for example, by provoking a division error with {{1/0}} if the thrown error
is returned and not caught.

A template injection can happen in two different contexts, which must be distin-
guished:

Plaintext context Here, the user input is free-standing in the template and not in
any template statement. Such a plaintext context is shown in Listing 5. If
the user input is the string “User”, for example, then Hello User is printed
in bold. If the user input is a template statement like {{7*7}} instead and it
is interpreted by the Python template engine Jinja2, Jinja2 will generate the
result Hello 49. The plaintext context often results in XSS because a user
input of <script>alert(1)</script> would be returned unmodified after
the Hello and executed by the browser. Accordingly, the XSS vulnerability
should be easily found by an automated scanner. The same is true for template
injections, as long as the scanner uses correct statement syntax or causes the
template engine to throw an error.

Code context Here, the user input is placed inside a template statement. Such a
code context is shown in Listing 6. If the user input is 7*7 and interpreted
by the Python template engine Jinja2, Jinja2 will generate the result Hello
49. However, the user input {{7*7}} as in the plaintext context would now
throw a syntax error, because Jinja2 does not expect an opening tag ({{) after
another opening tag ({{). If the syntax error is returned, it is easy to see
that the user input ends up in a template. Otherwise, if it the error is caught,
{{7*7}} would not be suitable to identify the template injection. The same is
true for XSS. An XSS payload like <script>alert(1)</script> would not
succeed in this context because Jinja2 would throw a syntax error. However,
the template statement can be closed to insert the XSS payload and then start
a second template statement to avoid errors. Therefore, for the user input 4}}
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1 template = "<b>Hello " + userinput + "</b>"

Listing 5: The user input is inserted free-standing into the template. This is called
“plaintext context”

1 template = "<b>Hello {{" + userinput + "}} </b>"

Listing 6: The user input is inserted into the template within an expression. This
is called “code context”

<script>alert(1)</script>{{9 the text Hello 49 is shown and the script
executed by the browser.

2.3.2 Identify

Once the possibility of a template injection has been detected, the next step is to
identify which template engine is used for processing the template. For example, if an
error is caused by a division by zero, the template engine can probably be identified
very easily from the error message. However, if errors are caught, this is no longer
possible. To solve this issue the following approach can be applied: A statement is
used that is only valid for a subset of template engines. Based on the results template
engines are excluded from the list of possible template engines. This process is
repeated iteratively until only one template engine is left on this list. For example,
{{7*'7'}} is interpreted as 7777777 by some template engines and as 49 by others.
Figure 2.2 shows a decision tree that can be used to distinguish between the four
template engines Blade, Twig, Jinja2 and Tornado.

{{7*'7'}}

Kir{{nonexistent}}lia

Kir{{nonexistent}}lia

Blade

Twig

Jinja2

Tornado

49

7777777

Error

Kirlia

Kirlia

Error

Figure 2.2: Decision tree to distinguish between four template engines.
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2.3.3 Exploit

After identifying the template engine in use, the next step is to exploit the template
injection vulnerability. Nowadays, there are many cheat sheets that show possible
template injection payloads for different template engines1,2. To create such pay-
loads or modify existing ones, the following three steps are required.

Read The first step is to read the documentation carefully. Besides the basic syntax
are variables, methods, and other functions of interest. Furthermore, it can
be very promising to look for security considerations, as these can point out
possible dangers and attack vectors.

Explore The second step is to find out what variables, objects, and methods are ac-
cessible. Many template engines provide a “self” object that contains all other
possible objects. In the case of Jinja2, for example, other possible objects can
be listed with the template expression {{self.__dict__}} (see Figure 2.3).
This is also an easy way to find out about objects that are not accessible by
default, but are passed to the template by the developer. If such a self ob-
ject is not accessible, possible objects can be enumerated using a brute force
approach.

Attack In the third and final step, the knowledge gained from the Read and Explore
steps can be utilized to call objects or methods that can be used to execute
malicious actions. For example, Listing 3 shows an SSTI payload for Jinja2
which allows RCE. In the depicted statement various objects are accessed iter-
atively starting at the self object until the Python os module can be accessed.
The os module provides the popen method, which can be used to execute a
command in a subprocess.

2.4 Template Injection Countermeasures

There are several ways to prevent template injections, or at least make them more
difficult to achieve.

Sandboxing Some template engines offer a sandbox mode that restricts functionality
to prevent malicious statements from being executed. However, these sand-
boxes are not foolproof, as research is repeatedly showing how such sandboxes
can be bypassed [6, 4, 5, 14]. Nevertheless, they make template injections more
difficult, even if they do not necessarily guarantee that no malicious statements
can be executed.

1https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection
2https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%

20Template%20Injection

https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection
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Figure 2.3: Jinja2 provides a dictionary object that contains all other available ob-
jects and functions.

User input validation Similar to other injection vulnerabilities, such as SQL injec-
tion (SQLi) and XSS, template injections can be made more difficult or even
prevented by carefully validating user input. An allow list is preferable to a
deny list. This is because with a deny list, the prohibited expressions and
characters can often be replaced with others. Thus, deny lists become very
high-maintenance and are not sufficient to prevent template injection attacks.
With an allow list, only certain expressions and characters are allowed, which
can effectively reduce the attack surface. Regex expressions are well suited for
this purpose; however, it should be noted that regex validations can potentially
lead to a denial of service if vulnerable regex expressions are used.

No user input in templates If possible, user input should not be inserted directly
into templates. Many, but not all, template engines have a feature called “con-
text”. Instead of the user input, placeholders can be inserted into the template
and the user input can be passed as parameters to the template engine. Sim-
ilar to a “prepared statement” in SQL[12], the template is then precompiled
with the placeholders, and afterwards the placeholders are replaced with the
parameters. Therefore, a user is not able to manipulate the template and a
template injection is prevented.

Usage of a logic-less template engines Logic-less template engines do not offer logic
and control flows. This means that often only placeholders can be replaced by
parameters, but no loops, expressions, or filters can be used. As a result, these
template engines have only a small attack surface. One of the most widely
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used logic-less template engines is Mustache, which has implementations in
many programming languages[11]. However, recent research has shown that
at least the PHP implementation of Mustache was vulnerable to RCE [14],
which has been fixed in Version 2.14.1[10].

Isolation of the template engine The template engine can be isolated to prevent
code execution or access to sensitive data in the event of a successful SSTI.
For example, it can run in a hardened Docker container configured to prevent
breakouts.



3 Template Injection Playground

This chapter introduces the Template Injection Playground, which can be used to test
a variety of template engines and is important for the following chapters. First, we
describe the use cases for which the playground was designed. Then, we explain the
features of the playground that are determined by the requirements of the use cases.
After that, we break down the selection of the template engines implemented in the
playground. This selection is very important because the results of the following
chapter depend on it. Next, we outline the structure of the playground. Finally, we
describe how to set up and run the playground.

3.1 Use-Cases and Requirements

The Template Injection Playground was built to create the polyglots for template
injection detection and template engine identification. The playground was also used
to create and test the TInjA template injection scanner which will be presented in
Chapter 5. Finally, it has also been used to benchmark TInjA and other template
injection scanners. The playground is released as an open source project so that
other cybersecurity enthusiasts and professionals can use it for any of the following
use cases:

UC1: Programming a template injection scanner. In this use case someone wants
to program a scanner that detects template injection vulnerabilities.

UC2: Compare template injection scanners. In this use case someone wants to
compare template injection scanners to find out which one is the best. These
comparison criteria could include, for example, the number of false posi-
tives/negatives, blind SSTI detection, and automated CSRF token extraction.

UC3: Create polyglots. In this use case, someone wants to create polyglots for
template engine detection that multiple template engines will react to.

UC4: Creating template expressions. In this use case, someone wants to create
template expressions that can be used to distinguish between different template
engines.

UC5: Template injection methodology. In this use case, someone wants to manu-
ally test the template injection methodology on different template engines.
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Table 3.1 summarizes the requirements towards the playground for each use case.
These requirements are:

Many TEs Many template engines (short TE) are available because each may be-
have in a different way.

Information about TEs Information about the template engines is available. This
includes links to the template engines’s documentation and example template
expressions.

Countermeasures Different countermeasures can be activated in order to simulate
different countermeasures used in the wild.

Scenarios There are different scenarios that change the behavior of the template en-
gine or the web page. Examples for such scenarios are blind template injections
or that the user input is being rendered on another page.

Table 3.1: The requirements of the use cases of the Template Injection Playground.
UC1 UC2 UC3 UC4 UC5

Many TEs x x x x x
Information about TEs x x x x
Countermeasures x x x
Scenarios x x x

3.2 Features

A total of 46 template engines for 8 different programming languages can be tested
for template injection. For each template engine, there is a simple web page that
inserts the content of a text box into a template. The template is then processed
by the TE and rendered on the web page. Due to this very simple scenario and the
insecure insertion of unprocessed user input into a template, it is easy to find and
exploit these template injection possibilities.

JavaScript template engines can often be implemented on both the server and client
sides. In the Template Injection Playground, the JavaScript TEs were implemented
server-side because the effects of SSTI are more dangerous and extensive than those
of CSTI, as described in Section 2.2. The only exception is the AngularJS template
engine. It is implemented client-side, as it does not offer a server-side implemen-
tation. SSTIs are also easier for scanners to detect because they do not require
JavaScript to be executed by the scanner itself. In order to help one get started
with a template engine, helpful links are provided for each TE, for example, to the
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official documentation or to blog posts containing information about template in-
jections for the specific TE. A collection of template expressions, syntax examples,
and special features is also provided for each TE.

In order to practice the manual procedure of the template injection methodology
in a completely unbiased way, a randomly selected template engine can be tested.
If desired, the selected TE can be revealed or another TE can be selected ran-
domly.

To make it more difficult to find and exploit template injections, there are global op-
tions that can be set and then applied to the web page for all TEs. This can be used
to validate whether a scanner is still able to detect template injections under more
difficult conditions. These global options are as follows:

1. Strings can be added to a deny list so that they are removed from user input.
This can invalidate template expressions that use these strings.

2. HTML encoding of the five HTML special characters &, <, >, ', and " can be
enabled. This can invalidate template expressions that use these characters.

3. Error message interception can be enabled. The common polyglots for de-
tecting template injections are based on a template engine throwing an error.
However, if this error is caught and not displayed to the user, it appears that
the template injection was not successful. Instead of common polyglots, tem-
plate expressions that can be processed correctly by the TE and do not throw
an error must be used.

4. Four special scenarios can be enabled:

a) In the case of the “originHeader” scenario, the value of the Origin header
is inserted into the template in place of the name parameter.

b) The “blind” scenario ensures that the output of the template engine is
not returned. This makes detection and identification of the template
engine much more difficult. If, in addition, the errors are suppressed
and hidden, then the only option is to try out-of-band SSTI payloads
for different template engines that might be used on the website. For
example, a possible real-world scenario is that the user input, after being
processed by a TE, is only visible in an admin panel to which the user
has no access.

c) The “otherLocationDirect” scenario ensures that the output of the TE is
not returned directly in the response, but is provided at the relative URL
/otherlocationdirect/, which is referenced in the response. A possible
real-world scenario is when one or more fields in a registration form are
processed by a TE, and the output is only visible when the user clicks on
their profile link after successful registration.
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d) The “otherLocation” scenario is similar to “otherLocationDirect”, but the
TE output is provided at the relative URL /otherlocation/ and this is
not referenced in the response. Instead, this URL is specified in a list of
URLs that can be passed to a scanner. This means that a scanner must
be able to look for the TE output not only in the direct response or in
a URL referenced in the response, but also in other URLs passed to the
scanner by, for example, a crawler.

5. Two different versions of Cross-Site Request Forgery (short CSRF) protection
can be enabled. In the first case, a random but fixed CSRF token is gener-
ated, which must be included in every POST request. If the correct value
is not provided, the user’s input will not be processed and an error message
will be returned. Such a static CSRF token is not recommended in a pro-
duction environment, as it does not effectively prevent CSRF attacks if the
attacker knows the fixed value. However, for this playground, it is sufficient to
simulate fixed but random and session-bound CSRF tokens without the need
to implement actual session handling, which is otherwise not required for the
playground. In the second case, a new random CSRF token is not generated
once, but on every request. This means that the last generated CSRF token
must be included in every POST request.

6. A user input length limit can be set. If the user input is longer than the
specified length limit, an error message is returned.

Five of the 46 implemented template engines offer a sandbox mode in which objects
and features classified as dangerous are prohibited. The Twig, Smarty, Latte, and
Jinja2 template engines can also be tested with their sandbox mode enabled. Un-
fortunately, it was not possible to implement the sandbox mode of the RazorEngine
in the playground without causing critical errors. The sandbox modes were imple-
mented with the unchanged default settings. Since Twig and RazorEngine do not
have default sandbox settings, but require explicit naming of objects and features
to be prohibited, the settings have been taken from the examples in the respective
documentation1,2.

Furthermore, the playground counts the number of requests that are sent to it. This
is a simple way to measure how many requests a scanner sends.

3.3 Implemented Template Engines

For the playground, it was important to implement the most relevant and widely
used template engines. This is necessary so that the polyglots used to detect tem-
plate injections and identify template engines can be used for as many websites as

1https://twig.symfony.com/doc/3.x/api.html#sandbox-extension
2https://antaris.github.io/RazorEngine/Isolation.html

https://twig.symfony.com/doc/3.x/api.html#sandbox-extension
https://antaris.github.io/RazorEngine/Isolation.html
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possible. The procedure to achieve this goal can be summarized as follows:
The most commonly used programming languages for website backends and the
most commonly used web frameworks were identified from various sources. Further,
the package managers of the respective programming languages were then used to
find the most commonly used template engines. We also considered which tem-
plate engines were used by default by the most popular web frameworks. In the
end, 47 template engines were selected as the most relevant according to our crite-
ria; however, one of the template engines—the template engine of the Angular web
framework—could not be implemented within a reasonable timeframe. As a result,
Angular was not included in the creation of the polyglots. The choice of program-
ming languages and template engines, as well as the shortcomings of the process,
are explained in more detail below.

3.3.1 Selection of Programming Languages

Selection Three different sources were used to find out the most popular program-
ming languages for websites.

1. “Usage statistics of server-side programming languages for websites”3 by w3techs.
According to their methodology4, w3techs analyzes the most relevant websites
to enumerate the most used server-side programming languages. For this pur-
pose, the top 1000 websites of the Tranco list5 are used. The most frequently
used server-side programming languages with more than one percent were
PHP, ASP.NET, Ruby, Java, Scala, JavaScript, and Python. All of these were
selected as candidates.

2. “Web framework and technologies survey 2022”6 by Stackoverflow.
Stackoverflow, one of the most popular platforms for developers to ask ques-
tions, conducts surveys every year. The latest 2022 results list 25 of the most
used web frameworks and technologies according to the votes. JavaScript
clearly leads the pack with Node.js, React.js, and many other frameworks
and technologies. ASP.Net, PHP, Python, Ruby, and Elixir (an Erlang-based
programming language) are also represented. This means that all the pro-
gramming languages selected in the previous step are represented, with the
exception of Java. Elixir was added to the list of candidates because of the
Phoenix web framework, which is ranked 22nd in the survey.

3. “Most Popular Backend Frameworks 2022”7 by Statistics and Data.
Statistics and Data lists web frameworks based on the stars they have accu-
mulated on Github. PHP, Python, JavaScript, Ruby, Java, ASP.NET, and

3https://w3techs.com/technologies/overview/programming_language
4https://w3techs.com/technologies
5https://tranco-list.eu/
6https://survey.stackoverflow.co/2022#section-most-popular-technologies-web-frameworks-and-technologies
7https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2022/

https://w3techs.com/technologies/overview/programming_language
https://w3techs.com/technologies
https://tranco-list.eu/
https://survey.stackoverflow.co/2022#section-most-popular-technologies-web-frameworks-and-technologies
https://statisticsanddata.org/data/most-popular-backend-frameworks-2012-2022/
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Golang are represented. As Golang appeared twice, it was also selected as a
candidate.

Shortcomings The w3tech statistics are only partially representative. This is be-
cause it is difficult to extrapolate from the top 1000 websites to the rest of the web.
In addition, some programming languages may be much more difficult or even im-
possible to detect, while others may be very easy to detect. An example of this is
PHP and Golang. With a file extension like .php or a session cookie like PHPSESSID,
it is easy to conclude that PHP is involved. Go, on the other hand, does not use
special file extensions and session cookie names, and is therefore in comparison much
more difficult or even impossible to detect.
The Stackoverflow survey is only partially representative, as the results depend heav-
ily on the respondents.
The list by Statistics and Data is only partially representative, as not all web frame-
works are published as public repositories on Github.

3.3.2 Selection of Template Engines

PHP, ASP.NET, Ruby, Java, Scala, JavaScript, Python, Elixir, and Golang are the
programming languages that were found to be the most relevant server-side pro-
gramming languages and were examined in more detail. In order to find the most
relevant template engines, the package managers of the respective programming lan-
guages were used and searched with different terms such as “template engine” or
“templating engine”. The results were sorted by the number of downloads, number
of dependencies, or other criteria, depending on the package manager’s capabilities.
As some template engines may not be found due to the search terms used, an addi-
tional search for web frameworks was performed for each programming language to
see which template engines they support according to their documentation or even
use by default. If a web framework has its own template engine, which cannot be
used independently of the web framework, the statistics of the web framework were
used to represent the template engine.
Table 3.2 shows the statistics for the selected template engines grouped by pro-
gramming language as of May 26, 2023. While Python has the most downloads
overall, JavaScript leads in the number of monthly downloads, packages that have
the template engine as a dependency, CVEs, and number of template engines which
were analyzed during this thesis. Unfortunately, not all package managers pub-
lish download counts. In addition, Golang and Ruby have their own template en-
gines that ship with the language by default, so only limited statistics are avail-
able.

The top-ranked Template Engines according to programming language are shown
below, along with more detailed statistics.
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Table 3.2: The statistics of the selected template engines grouped by programming
language and sorted by total downloads as of May 26, 2023.

Downloads
TE Total Monthly Dependants CVEs Selected TEs
Python 5.493.037.118 171.278.046 n/aa 21 7
JavaScriptb 3.586.370.264 199.896.868 145.291 62 14
Ruby 822.357.421c n/aa n/aa 7 7
PHP 550.034.563 10.304.467 21.528 19 5
Elixir 110.175.420 108.141 n/aa 1 3
ASP.NET 69.500.000 2.365.716 447 1 5
Golang n/aa n/aa 49.113 0 1
Java n/aa n/aa 15.001 5 4
Scala n/aa n/aa 319 0 3

aThis information is not disclosed by the package manager.
bClient-side implemented template engines are typically provided by content delivery networks

and therefore do not need to be downloaded with the package manager.
cRuby has a default TE called ERB that ships with Ruby. Therefore, only explicit downloads of

another ERB version are included in this statistic.

Python Python uses the pip package manager, which can install packages from
several indexes. The largest package index is pypi8. The pypi website does not
give any information about the number of downloads, but a third-party website9

can be used to show the number of total and monthly downloads of a pypi pack-
age. The template engines with more than four million downloads are listed in
Table 3.3.

The web frameworks Flask (2012 million downloads) and Sanic (122 million down-
loads) use Jinja2 as the default TE. Tornado (803 million downloads) has its own
template engine, while Django (377 million downloads) uses both its own template
engine and Jinja2. Fastapi (204 million downloads) does not use a default TE, but
recommends using Jinja2. Bottle (86 million downloads) also has its own template
engine called SimpleTemplate.

All template engines listed in Table 3.3 have been implemented in the playground.

JavaScript npm is a package manager for JavaScript. The official website10 shows
the number of weekly downloads and the number of dependents for each package.
To compare the number of monthly downloads with other template engines, the

8https://pypi.org/
9https://pepy.tech/

10https://www.npmjs.com/

https://pypi.org/
https://pepy.tech/
https://www.npmjs.com/
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Table 3.3: The statistics of the selected Python template engines sorted by total
downloads as of May 26, 2023.

Downloads
TE Total Monthly CVEs Latest Release
Jinja2 3.526.760.554 110.003.992 5 04.2022 (3.1.2)
Tornado 797.201.003 24.901.269 5 05.2023 (6.3.2)
Mako 687.082.652 24.085.174 2 11.2022 (1.2.4)
Django 374.904.154 9.772.203 5 05.2023 (4.2.1)
SimpleTemplate (Bottle) 86.281.975 2.030.476 4 03.2023 (0.12.25)
Pystache 81.205.055 1.396.423 0 12.2021 (0.6.0)
Cheetah3 16.229.032 408.409 0 07.2021 (3.2.7b1)
Chameleon 4.577.748 76.523 0 03.2023 (4.0.0)

number of weekly downloads was multiplied by four. A third party website11 can be
used to find out the number of total downloads. The template engines with more
than 10 million downloads are listed in Table 3.4.

For the JavaScript TEs, it should be noted that except for Angular, all other TEs can
be embedded with a script tag on the client side. This means that the package does
not need to be downloaded. For example, there are several Content Delivery Net-
works (CDNs), such as cdnjs12, that provide the JavaScript file to be imported with
the script tag. Because of this client-side integration, the usage of the JavaScript
template engines can be much higher than the number of downloads provided by
npm would suggest. Another important note is that AngularJS has not been main-
tained since January 2022 and the current version is affected now by five CVEs.
Nevertheless, this TE still is downloaded almost two million times per week using
npm.

There are many large web frameworks for JavaScript. Most of them (including
react.js, express.js, and next.js) do not have a template engine by default. The
three web frameworks Vue.js, AngularJS, and Angular each have their own tem-
plate engine.

All TEs listed in Table 3.4 have been implemented in the playground except for
Angular. Angular could not be successfully implemented in the playground within
a given time frame. AngularJS does not support server-side usage, so it was in-
cluded client-side via a script tag. The other TEs were implemented server-side
because the potential consequences of an SSTI are more extensive than those of a
CSTI.
11http://npm-stats.org/
12https://cdnjs.com

http://npm-stats.org/
https://cdnjs.com
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Table 3.4: The statistics of the selected JavaScript template engines sorted by total
downloads as of May 26, 2023.

Downloads
TEa Total Monthly Dependents CVEs Latest Release
EJS 846.918.758 49.905.284 12.493 5 03.2023 (3.1.9)
Handlebars 817.379.329 47.418.028 13.123 11 02.2021 (4.7.7)
Underscore 746.142.833 44.259.608 22.863 1 09.2022 (1.13.6)
Vue.js 417.686.075 15.639.032 67.457 4 05.2023 (3.3.4)
Angular 233.824.845 12.862.320 13.454 1 05.2023 (16.0.2)
Mustache.js 220.073.918 13.355.200 4.554 2 03.2021 (4.2.0)
Pug 100.277.984 5.148.800 3.206 1 02.2021 (3.0.2)
AngularJS 40.540.404 1.954.520 4.132 31b 04.2022 (1.8.3)
Hogan.js 34.684.968 1.764.864 540 0 06.2014 (3.0.2)
Nunjucks 33.668.137 1.992.048 2.293 3 04.2023 (3.2.4)
Dot 32.608.519 1.855.052 542 1 07.2020 (1.1.3)
Velocityjs 32.236.352 1.731.864 140 0 01.2022 (2.0.6)
Eta 16.549.758 1.314.224 129 2 05.2022 (2.2.0)
Twig.js 13.778.384 696.024 365 0 02.2023 (1.16.0)

aClient-side implemented template engines are typically provided by content delivery networks
and therefore do not need to be downloaded with the package manager.

bFive of the 31 CVEs affect even the latest version (1.8.3).
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Ruby Rubygems13 is Ruby’s package (“gem”) hosting service. Among other statis-
tics, it shows the total number of downloads. The template engines with more than
30 million downloads are shown in Table 3.5.

Table 3.5: The statistics of the selected Ruby template engines sorted by total down-
loads as of May 26, 2023.

TEa Total Downloads CVEs Latest Release
Erubi 274.457.236 0 12.2022 (1.12.0)
Erubis 252.591.965 1b 04.2011 (2.7.0)
Haml 122.507.906 4 12.2022 (6.1.1)
Liquid 64.527.452 2 07.2022 (5.4.0)
Slim 55.831.034 0 05.2023 (5.1.1)
Mustache 51.572.186 0 12.2019 (1.1.1)
ERB (Ruby’s Default) 869.642c 0 11.2022 (4.0.2)

aClient-side template engines are typically provided by content delivery networks and therefore do
not need to be downloaded with the package manager.

bThis CVE affects even the latest version (2.7.0).
cERB ships with Ruby. Therefore, only explicit downloads of another ERB version are included

in this statistic.

ERB is a template engine that is a so-called “standard gem”. Standard gems come
with the Ruby programming language by default, similar to a standard library.
However, it is possible to download standard gems using the package manager if a
different version is required. Only in this case it is counted as a download in the
statistics. So the actual usage of ERB is probably much higher.

For Ruby two big web frameworks exist: Rails (434.9 million downloads), which
uses Erubi as TE, and Sinatra (223.9 million downloads), which has no default TE.

All TEs listed in Table 3.5 have been implemented in the playground.

PHP Composer is a dependency manager for PHP. The main repository for Com-
poser is Packagist14. Packagist shows, among other statistics, the number of installs
for each package. The most installed template engines, with more than 5 million
installs, are shown in Table 3.6.

The most installed web frameworks for PHP are Laravel (254 million downloads),
which uses its own Blade template engine, Zend (75 million downloads) without a
default template engine, and Symfony (74 million downloads) and slim (27 million
downloads), both using Twig as default.
13https://rubygems.org/
14https://packagist.org/explore/popular

https://rubygems.org/
https://packagist.org/explore/popular
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Table 3.6: The statistics of the selected PHP template engines sorted by total down-
loads as of May 26, 2023.

Downloads
TE Total Monthly Dependants CVEs Latest Release
Blade (Laravel) 254.530.322 4.839.141 14.100 2 05.2023 (10.12.0)
Twig 248.482.851 4.237.630 5.935 5 05.2023 (3.6.0)
Mustache.php 22.488.094 550.125 332 1 08.2022 (2.14.2)
Smarty 17.298.966 568.661 488 9 03.2023 (4.3.1)
Latte 7.234.330 108.910 673 2 03.2023 (3.0.6)

All TEs listed in Table 3.6 have been implemented in the playground.

Elixir Hex15 is the package manager for both Elixir and Erlang. In addition to
the number of total and weekly downloads, the dependencies are also shown. Based
on the number of weekly downloads, the number of monthly downloads have been
calculated so that they can be compared with the TEs of the other programming
languages. The template engines with more than five million downloads are listed
in Table 3.7.

Table 3.7: The statistics of the selected Elixir template engines sorted by total down-
loads as of May 26, 2023.

Downloads
TE Total Monthly Dependants CVEs Latest Release
EEx n/a n/a n/a 0 n/a
LEEx/HEEx (Phoenix) 110.175.420 108.141 403 1 03.2023 (1.7.2)

EEx stands for “Embedded Elixir” and is the default template engine of Elixir. Since
it comes with Elixir by default, there is no number of downloads available. Both
LEEx and HEEx are template engines from the Phoenix web framework. HEEx
is the successor of LEEx. However, both are available as default template engines
along with EEx.

All template engines listed in Table 3.7 have been implemented in the playground.

15https://hex.pm/

https://hex.pm/
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ASP.NET NuGet16, the package manager for ASP.NET, shows, among other statis-
tics, the number of downloads for the packages. The template engines with more
than 5 million downloads are shown in Table 3.8.

Table 3.8: The statistics of the selected ASP.NET template engines sorted by total
downloads as of May 26, 2023.

Downloads
TE Total Monthly Dependants CVEs Latest Release
RazorEngine 24.300.000 391.809 172 1a 09.2017 (4.5.1-a001)
DotLiquid 16.400.000 499.391 75 0 03.2023 (2.2.692)
Scriban 15.800.000 795.178 111 0 02.2023 (5.7.0)
RazorEngine.NetCore 6.600.000 283.274 53 0 06.2020 (3.1.0)
Fluid 6.400.000 396.065 447 0 03.2023 (2.4.0)

aThis CVE affects even the latest version (4.5.1-a001).

It is particularly noteworthy that the RazorEngine has not been updated since
September 2017, and that a critical CVE affecting all released versions exists. The
vulnerability identified by the CVE is an SSTI RCE, which is exploitable even when
sandbox mode is enabled.

The default web framework for ASP.NET is Blazor. It uses the Razor view engine,
which allows templating. However, dynamic templates are not possible as the tem-
plates must be pre-compiled. RazorEngine and its fork RazorEngine.NetCore are
template engines that use the Razor syntax to build dynamic templates. There are
several other web frameworks for ASP.NET available. ABP (16.8 million downloads)
uses the Razor view engine and Scriban as the default TE. ASP.NET Boilerplate
(12.6 million downloads) has no default TE. Nancy (10.5 million downloads) uses its
own SuperSimpleViewEngine which is based on the Razor view engine. service stack
(8.9 million downloads) uses the Razor view engine.

All TEs listed in Table 3.8 have been implemented in the playground. except for
RazorEngine. While RazorEngine.NetCore—a fork of RazorEngine—was easy to
implement, RazorEngine was not compatible with the ASP.NET project used for
the playground.

Golang Golang provides a built-in package manager and all available packages
can be found on its website17. There are no download counts, but the number of
dependents is shown as “imported by”. The template engines with more than 240
dependants are shown in Table 3.9.
16https://www.nuget.org/
17https://pkg.go.dev/

https://www.nuget.org/
https://pkg.go.dev/
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Table 3.9: The statistics of the selected Golang template engines sorted by depen-
dants as of May 26, 2023.

TE Dependants Github Stars CVEs Latest Release
text/template 60249 n/a 0 05.2023 (1.20.4)
html/template 49221 n/a 0 05.2023 (1.20.4)
fasttemplate 734 0.7k 0 10.2022 (1.2.2)
pongo2 689 2.5k 0 06.2022 (6.0.0)
jet 527 1k 0 12.2022 (6.2.0)
ace 459 0.8k 0 07.2016 (0.0.5)
quicktemplate 316 2.8k 0 09.2021 (1.7.0)
amber 244 0.9k 0 10.2017 (0.0.0)

Both text/template and html/template are standard Golang packages that ship with
the language.

Most of the major Golang web frameworks, as measured by Github stars, use
html/template as their template engine. These include Gin (69k stars), Beego (29.8k
stars), echo (25.8k stars), and Revel (12.9k stars). In contrast, Fiber (26.k stars)
and Iris (24k stars) have several TEs integrated. These include html/template and
most of the other TEs listed in Table 3.9, as well as some TEs with less than 500
stars on Github.

Only text/template and html/template have been implemented in the playground,
as the other template engines listed in Table 3.9 are not relevant enough—at least
at this point—compared to the two standard packages.

Java For Java two major package managers, Maven18 and Gradle19, exist. Since
there is no practical way to search for Gradle packages, Maven was used. Unfor-
tunately it does not provide the number of downloads. The only comparable value
is the number of usages. These are equivalent to dependents, as they also indicate
how many other packages use a package. The template engines with more than 400
usages are shown in Table 3.10.

Of particular note is that 1815 of Velocity’s 2850 dependents use deprecated ver-
sions, all of which are affected by CVEs.

For Java, there are two major web frameworks. Spring (28 thousand usages) is
the most used web framework and has no default TE. However, there are four pack-
ages that combine the Spring Web Framework with Thymeleaf. These four combined
18https://mvnrepository.com/
19https://gradle.org/

https://mvnrepository.com/
https://gradle.org/
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Table 3.10: The statistics of the selected Java template engines sorted by dependants
as of May 26, 2023.

TE Dependants CVEs Latest Release
Groovy 8997 2 05.2023 (4.0.12)
Freemarker 2716 1 01.2023 (2.3.32)
Velocity 2850 2 03.2021 (2.3)
Thymeleaf 438 0 12.2022 (3.1.1.RELEASE)

have just over one thousand usages. GWT (2.3 thousand usages) is the second most
used web framework and has no default TE.

All TEs listed in Table 3.10 have been implemented in the playground.

Scala The Scala Library Index20 indexes libraries and projects for Scala. Only the
dependents, dependencies, and Github statistics are provided. The template engines
with more than 100 stars on Github are listed in Table 3.11.

Table 3.11: The statistics of the selected Scala template engines sorted by depen-
dants as of May 26, 2023.

TE Dependants Github Stars CVEs Latest Release
Twirl 289 522 0 12.2022 (1.5.2)
Scalate 30 598 0 03.2022 (1.9.8)
Beard 0 121 0 03.2020 (0.3.1)

None of the Scala template engines listed in Table 3.11 have been implemented in
the playground. Both Twirl and Scalate do not allow dynamic templates. This is
because they have a template compiler that is only executed when the whole project
is compiled. This means that to inject a template, user input must first be entered
into a template file, and then the project must be recompiled and restarted. Since
this is very cumbersome and not suitable for automated scanning, the template
engines were not implemented. With Beard dynamic templates should be possible,
but it is far away from the relevance of the other template engines and has not been
maintained for more than 3 years.

20https://index.scala-lang.org/

https://index.scala-lang.org/
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3.4 Design and Implementation

In the following, the structure of the website, the servers and the project is ex-
plained.

3.4.1 Website

The website consists of the following pages:

Index The index page gives a brief introduction to the playground and explains the
other pages available.

TEs All implemented template engines are listed here. The template engines are
grouped based on their programming languages and sorted in descending or-
der by the number of downloads (or similar factors) for each programming
language. Selecting a TE will take one to its details page.

TE details Besides a short description of the TE, this page provides the following
details:

1. Links to the documentation and blog posts that contain information
about template injections for the TE.

2. Links to the different “modes” implemented for the TE.

3. A collection of template expressions and syntax examples for the TE.

TE modes Every TE has the “Default” mode, where the TE has been implemented
intentionally in an insecure way and without any countermeasures applied.
Some TEs also have the “Sandbox” mode, where the TE was also implemented
in an insecure way, but the sandbox mode of the TE was enabled. The TEs are
implemented in an insecure way by concatenating user input into the string
that is passed to the template engine as a template. Selecting a mode brings up
a simple page that always looks the same, containing a textbox and a button.
When the button is clicked, the content of the textbox is inserted into the
template string and passed to the TE. The result is then displayed below the
textbox.

Config This page provides access to global settings which have an effect on all modes
of all template engines. The current config is displayed and the config options
are explained. These five settings that can be set:

1. hideError can be enabled. This will intercept error messages thrown by
the TE or the web server. Instead, a response is generated in which the
user input is inserted without being processed by the TE. Thus, it is not
possible to detect the presence of a TE or identify which TE is used from
a template expression that causes an error.
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2. removeArray allows to define a deny list containing an arbitrary number
of characters and strings. The entries of the deny list will be removed from
the input before it is passed to the TE. Using such a deny list approach is
not atypical for user input on web pages. Depending on the length of the
deny list, some or even all template injection payloads can be mitigated.

3. htmlEncode can be enabled, which encodes the five HTML special char-
acters &, <, >, ', and " into HTML entities. This is a common coun-
termeasure to prevent XSS and can mitigate some template injection
payloads.

4. special is used to enable the special scenarios described in Section 3.2.
It can either be an empty string or have one of the following values:

blind ensures that the output of the TE is not returned.

otherLocationDirect ensures that the TE output is not returned directly
in the response, but at the relative URL /otherlocationdirect/,
which is referenced in the response.

otherLocation is similar to “otherLocationDirect”, but the TE output is
provided at the relative URL /otherlocation/, which is not refer-
enced in the response.

5. csrfProtection can either be an empty string or have one of the follow-
ing values:

static In this case, a random but fixed CSRF token is generated, which
must be provided with every POST request.

nonce Each time a page containing a POST form is requested, a new
random CSRF token is generated, which must be provided in the
next POST request.

Links This page contains a collection of links to the different modes of all TEs. The
following two special URLs are also provided:

1. /otherlocation/ contains the last generated TE output, if the config
setting special contains the value otherlocation.

2. /echo/ is a page structured exactly like the pages where user input is
processed by a TE. However, instead of the user input being processed by
a TE, the user input is inserted into the template and returned directly. If
removeArray or htmlEncode is enabled in the config, the user input may
have been modified. The echo page is provided in order to potentially
trigger a false positive if the user input has been modified in any way
other than by a TE.

Random TE This provides a page with a randomly selected TE mode. Anything
that points to the template engine will be removed.



3.4 Design and Implementation 29

3.4.2 Servers

The playground consists of a total of nine Docker containers, each of which contains
a web server. Eight of these web servers serve web pages with all template engines
for one of the eight programming languages. The ninth web server is NGINX21,
which is very versatile and can also be used as a reverse proxy and load balancer.
While the other web servers are only accessible within the Docker network, NGINX
is also accessible from the host machine. NGINX performs several tasks within the
playground:

• NGINX serves all the pages of the playground, except for the pages with the
built-in template engines, which are served by the other web servers.

• NGINX handles the routing of HTTP requests and responses. For example, if
the path of a URL in the playground starts with /python/, /php/, or another
programming language, NGINX routes the request to the appropriate web
server. This allows web pages with the TEs to be requested from the host
machine, and at the same time, everything can be served from a single host.
This ensures that the playground is a unified website and does not need to
switch between multiple hosts.

• The global settings are implemented with NGINX altering the HTTP requests
and responses. This is made possible by the njs scripting language22, which is
based on JavaScript. HTTP requests are altered in different cases. For exam-
ple, NGINX decodes or removes HTML characters before sending a request to
one of the web servers, if this is desired according to the configuration. NGINX
also checks if CSRF protection is enabled and if the CSRF token is correct.

• The HTTP responses of the web servers are altered, for example, if the con-
fig specifies that the TE output should not be returned (blind scenario) or
should be rendered on another page (otherLocation or otherLocationDirect
scenario). In the first case, the TE output is removed; in the second case,
the output is saved to a file and also removed from the response. When the
/otherLocation/ page is requested, the last saved TE output can be read
from the file. In the otherLocationDirect scenario, the saved TE output can
be read from /otherLocationDirect/ and a link to this path is also added
to the returned response.

Since NGINX does not provide any functionality to set a variable with njs in one
request and read it again in another request, saving and reading files is used as a
workaround.

Figure 3.1 shows a sample request to /python/Jinja2. An HTTP GET request
is sent to NGINX, which is accessible from the local machine. NGINX recognizes
21https://www.nginx.com/
22https://NGINX.org/en/docs/njs/

https://www.nginx.com/
https://NGINX.org/en/docs/njs/
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from the path beginning with /python/ that the request should be forwarded to
the python web server. The Docker network is configured so that the python web-
server can be reached internally via http://python:13375. Before forwarding the
request, NGINX may make changes to the request, such as removing characters
from the user input that are on the deny list. When NGINX receives a response
from the python web server, it can again make changes, such as removing template
engine output if the blind scenario is enabled. Finally, the response is passed to
the browser. It is not possible to call the web servers directly because they are in
an internal Docker network and only NGINX can be used as an interface to the
outside.

Python
web

server

NGINX
Proxy

Browser
http://127.0.0.1:13370/python/Jinja2

Docker Network

HTTP/1.1 200 OK

Ruby web
server

Golang
web

server

http://python:13375/Jinja2

HTTP/1.1 200 OK

Figure 3.1: A sample request to /python/Jinja2 that NGINX passes to the Python
web server.

3.4.3 Project

The main directory of the project consists of nine folders, one folder for each web
server, and the two files docker-compose.yml and README.md. README.md contains
the project description written in Markdown. docker-compose.yml contains the
path to the Dockerfiles for all web servers. The web server folders contain the
Dockerfile, which contains all the information Docker needs to build and start the
web server. The web server folders also contain a folder with the project files for
each web framework used, which are imported into each Docker container when it
is created. The nginx folder contains the Dockerfile and two other folders. The
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root folder contains the HTML, CSS, JavaScript, and image files for the playground
website. The njs folder contains JavaScript files, which contain the methods that
NGINX uses to manipulate the HTTP requests and responses, and the files used to
store the CSRF token or config.

3.5 Setup and Usage

Shortly after the thesis is published, the playground will be made available to the
public. To use the playground, there are two requirements. First, a Docker Compose
installation must be in place23. Second, the Template Injection Playground Github
repository needs to be downloaded. It is recommended to download the latest re-
lease.

In the root directory (where the docker-compose.yml file is located), there are two
commands that need to be run to get the playground up and running.

docker compose build This command builds the services needed for the playground.

docker compose up This command builds the containers and starts them.

Finally, the playground is served at http://127.0.0.1:13370.

23https://docs.docker.com/compose/install/

http://127.0.0.1:13370
https://docs.docker.com/compose/install/




4 Improving the Template Injection
Methodology

This chapter describes the procedure for improving the Detect and Identify steps of
the template injection methodology and the corresponding results. First, we define
four different types of polyglots for template injection detection. Then, we compare
the existing polyglots and create new polyglots that are shorter and work for more
template engines. In particular, we design a new type of template injection polyglots
that does not aim to throw errors. Next, we explain how these detection polyglots
can also be used to efficiently identify template engines. Finally, we present the Tem-
plate Injection Table. This is a web page with an interactive table containing the an-
alyzed polyglots and the expected responses of the tested template engines. Among
other things, the table can be used as an aid when performing the template injection
methodology in order to use the efficient polyglots.

4.1 Detection of Template Injection Possibilities

The possibility of template injection can be detected by trying different template
expressions as an input for the parameter in question. However, there are a large
number of possible template engines that use different syntaxes and provide different
features. Thus, the number of template expressions that need to be tested to ensure
that no template injection is possible increases almost linearly. This is where poly-
glots come in handy. In computer science, the term polyglot is used to describe a type
of software that can be interpreted by multiple programming languages. In the case
of template injections, polyglots are template expressions that can be interpreted by
multiple different template engines. This can significantly reduce the number of tem-
plate expressions required when testing whether a template engine is in use. This is
especially important for large-scale scans, since each additional HTTP request must
be multiplied by the number of parameters to be tested per URL. In this thesis,
there are four different types of polyglots distinguished:

1. Universal Error

2. Language-Specific Error

3. Universal Non-Error

4. Language-Specific Non-Error
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An error polyglot causes template engines to throw an error.

A non-error polyglot, on the other hand, avoids causing template engines to throw
an error. Instead, it aims to have the template engine successfully render an out-
put.

A universal polyglot is intended to be interpreted by as many different template
engines as possible.

A language specific polyglot, on the other hand, limits the set of targeted template
engines to one programming language. Because of the smaller set of template engines
to be addressed, it is possible to create much shorter polyglots. The polyglot length
is relevant if the input length is limited.

All of the polyglots examined and created during this thesis work the same way for
JavaScript template engines regardless of whether the engine is running client-side
or server-side. This is because the polyglots only use basic features such as printing
numbers, comments, and simple comparisons that are supported by both clients and
servers.

4.1.1 Universal Error Polyglots

Searching for template injection polyglots in the public domain using articles, blog
posts, and cheat sheets about template injection, only two polyglots could be found.
Both polyglots are classified as universal error polyglots. The first one is ${<%[%'"}}
%\ (PG1) and the second one is ${<%[%'"}}%\. (PG2). The only distinction be-
tween them is that the latter has a dot appended to it. Unfortunately, the ori-
gin of these two polyglots could not be determined. In addition, Miguel Reis
Silva created three polyglots in his master thesis using 15 template engines [8].
These are <#set($x<%={{@{#{${xux}}%>) (PG3), <%={{@{#{${xu}}%> (PG4), and
<th:t=\"${xu}#foreach (PG5). However, we could not find any mention of these
polyglots in any of the common cheat sheets, articles, and blog posts.

All five polyglots were tested in the 51 different test cases provided by the Template
Injection Playground. These test cases consist of all modes of 44 template engines
implemented in the playground. Some template engines have an additional mode
in addition to the default mode in which, for example, the sandbox is activated.
Therefore there are a few more test cases than template engines. The two template
engines LEEx and HEEx were not included because they do not support dynamic
templates. In addition, the test was carried out with the default configuration, so
that there were no countermeasures in place. Finally, the polyglots were evaluated
according to the following criteria:

Error The number of template engines throwing an error.
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Modified The number of template engines rendering something other than the un-
modified polyglot.

Total detected The total number of detected template engines. This is the sum of
the two criteria above.

Length The number of characters the polyglot consists of. Since the possible input
length may be limited, it is important that a polyglot is as short as possible.

The results are shown in Table 4.1. In addition to the five polyglots mentioned
above (PG1 - PG5), two new universal error polyglots were created and evaluated:
<%'${{#{@}}%> (PG6) and <%'${{/#{@}}%>{{ (PG7). PG6 led to the detection of
template injection in all 51 test cases and is even—together with PG1—the shortest
polyglot. For comparison: PG3 detects only one template injection less, but it is
more than twice as long. The polyglots PG1 - PG6 do not throw an error in all
template engines. However, some render the polyglot modified. Therefore, PG7
was developed based on PG6. With PG7, the template engines throw an error in
all 51 test cases. However, it is also three characters longer than PG6, for which
only four template engines do not throw an error, but instead render the polyglot
modified. PG1 and PG2 behaved exactly the same during testing. PG2 may orig-
inate in a copy-paste error: PG1 might have been at the end of a sentence, and
the dot referred to the end of the sentence and was not supposed to be part of the
polyglot.

Table 4.1: The evaluation results of the seven examined universal error polyglots,
measured on the template injection playground. Abbr. is the abbrevi-
ation of the respective polyglot. Mod. indicates in the number of test
cases in which the polyglot was rendered modified. Error indicates the
number of test cases in which the polyglot caused the template engine to
throw an error. Total Det. is the sum of Mod. and Error. Length is
the length of the polyglot.

Polyglot Abbr. Mod. Error Unmod. Total Det. Length
${<%[%'"}}%\ PG1 2 37 12 39 13
${{<%[%'"}}%\. PG2 2 37 12 39 14
<#set($x<%={{={@{#{${xux}}%>) PG3 4 46 1 50 29
<%={{={@{#{${xu}}%> PG4 4 44 3 48 19
<th:t=\"${xu}#foreach. PG5 1 15 35 16 22
<%'${{#{@}}%> PG6 4 47 0 51 13
<%'${{/#{@}}%>{{ PG7 0 51 0 51 16

In his master’s thesis, Miguel Reis Silva described in detail how he created his poly-
glots. Among other things, the opening and closing tags of 15 template engines
were strung together and shortened by rearranging and summarizing. The tem-
plate engines would then throw an error due to unexpected special characters or an
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unknown variable between the opening and closing tags. The resulting PG3 was
able to trigger an error message for 12 of the 15 template engines, while the other
three rendered the polyglot unprocessed. The three template engines that rendered
the polyglot unchanged were FreeMarker, Velocity, and Thymeleaf [8]. However,
when PG3 was tested with the Template Injection Playground, FreeMarker and
Velocity threw an error. When checking the different behaviors, it came out that
Silva had a bug in his test setup. The web application catches error messages
for both FreeMarker1 and Velocity2 and does not return the error message. Ac-
cordingly, it was not possible to receive an error message with these two template
engines.

The polyglots PG6 and PG7 created for this thesis were created in a similar manner
to Silva’s PG3. First, the opening and closing tags of all 45 implemented template
engines were collected. Most template engines use <% %>, ${ }, {{ }}, and #{ }.
The resulting polyglot <%${#{}}}}%> can be shortened by merging the two opening
tags ${ and {{ into ${. Similarly, the multiple closing tags }}}} can be shortened
to just }}. It is not possible to remove either of the closing tags }} or %>, because
some template engines only recognize something as a template expression if both
opening and closing tags are present. This results in <%${#{}}%>, which is very
close to the polyglot PG6 except for two crucial characters. RazorEngine uses @( )
for statements or just an @ followed by a string to reference variables. For example,
an @ can be added between #{ and }}, resulting in <%${#{@}}%>. This will cause
RazorEngine to throw an error because } is an unexpected special character after an
@. At the same time, the engines with the opening tag #{ throw an error because of
the unexpected special character @. The only template engine for which no opening
tag is present in the polyglot yet, and therefore would not react at all, is Thymeleaf.
This template engine uses either the HTML tag attribute th:text="${ }" or the
opening and closing tags [[${ }]] or [(${ })]. To add Thymeleaf’s opening and
closing tags would require at least four additional characters. However, Thymeleaf
throws an error when it encounters the string <', as well as <%'. Why the error
is thrown is not clear from the error message or the documentation. Nevertheless,
this behavior requires only one additional character instead of four. This procedure
finally resulted in the polyglot PG6 <%'${{#{@}}%>.

Although we used the same methodology as Silva for his PG3 (<#set($x<%={{@{#{${
xux}}%>)), our PG6 (<%'${{#{@}}%>) is less than half as long and detects one tem-
plate engine more. This is mainly due to four differences:

1. Silva used opening tags for expressions where the result should be rendered.
For example, <%= 7*7 %> would compute the result 49 and render it, while
<% 7*7 %> would also compute 49 but not render the result. However, to

1https://github.com/DiogoMRSilva/websitesVulnerableToSSTI/blob/master/java/
springBased/src/src/main/java/Main.java#L66C13-L66C30

2https://github.com/DiogoMRSilva/websitesVulnerableToSSTI/blob/master/java/
springBased/src/src/main/java/Main.java#L143

https://github.com/DiogoMRSilva/websitesVulnerableToSSTI/blob/master/java/springBased/src/src/main/java/Main.java#L66C13-L66C30
https://github.com/DiogoMRSilva/websitesVulnerableToSSTI/blob/master/java/springBased/src/src/main/java/Main.java#L66C13-L66C30
https://github.com/DiogoMRSilva/websitesVulnerableToSSTI/blob/master/java/springBased/src/src/main/java/Main.java#L143
https://github.com/DiogoMRSilva/websitesVulnerableToSSTI/blob/master/java/springBased/src/src/main/java/Main.java#L143
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throw an error, it is not relevant to instruct the template engine to render the
result, since it is supposed to throw an error anyway.

2. xux is supposed to refer to a non-existent variable, which should throw an
error. Instead, an unexpected special character that is already needed for
other reasons can be used. For example, the three extra characters can be
avoided by using the @ character instead of xux.

3. #set($x) is only available for the template engine Velocity and is an expression
to set the value of the variable x. However, it is possible to make Velocity throw
an error in a much shorter way. #DIRECTIVE or #{DIRECTIVE} tells Velocity to
use a directive such as “set” to set variables. If an unknown directive name such
as #{foo} is used, nothing happens and the expression is rendered unchanged.
However, if the directive name contains an unexpected special character such
as @, Velocity will throw an error. Thus, #{@} in PG6 causes Velocity to throw
an error without requiring additional characters just for Velocity, since they
are already present for other template engines.

4. The fact that Thymeleaf throws an error for <' or <%' was probably not known,
nor were the alternative tags [[${ }]] and [(${ })].

PG6 has a detection rate of 100% only if the user input is reflected for four of the tem-
plate engines (Liquid, DotLiquid, Scriban, Pystache). If this is not the case, and the
template injection can only be detected by triggering errors, the polyglot is success-
ful in only 47 of the 51 test cases. To overcome this shortcoming, <%'${{/#{@}}%>{
(PG7) was created to trigger an error message instead of a modified response for the
remaining four test cases. Liquid and Pystache turned out to be the most difficult
ones to make throwing errors. In our tests, Liquid only failed when an opening tag
({{) was not followed by a closing tag (}}). In other cases, such as division by zero
or references to non-existent variables, only an empty string was returned instead
of an error message. To address these issues, PG6 was appended with {{ resulting
in <%'${{#{@}}%>{{. Fortunately, not only Liquid, but also DotLiquid and Scriban
throw an error when using this polyglot. This is because they use the same open-
ing and closing tags and also throw an error if an opening tag is not followed by a
closing tag. Pystache is a Mustache implementation for Python and thus belongs
to the logic-less template engines. These engines offer only a very small range of
functions. Therefore the possibilities to throw errors are rather limited. However,
Mustache, and therefore Pystache as well, does offer a feature called “sections”. Ev-
erything within a section can be rendered any number of times. For example, a
section named “person” starts with {{#person}} and ends with {{/person}}. If a
section that was not open before is closed, Pystache throws an error. In the case of
the polyglot <%'${{#{@}}%>{{ another / was added after the first {{, resulting in
PG7 <%'${{/#{@}}%>{{. PG7 is the only polyglot to throw an error in all 51 test
cases, and the only one of the universal error polyglots examined to throw an error
in Liquid and Pystache.
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4.1.2 Language-Specific Error Polyglots

The language-specific polyglots each cover all template engines of one specific pro-
gramming language. Focusing on these subsets of the 51 test cases enables shorter
polyglots. This can be relevant, for example, if the universal error polyglot PG6 with
its 13 characters is too long. Even with less than 13 characters, template injection
vulnerabilities can be exploited. Two examples are the nine-character expression
<%=`ls`%> of the ERB template engine, which returns the files in the directory
in which the web server is running, and the 10-character expression {{config}}
of the Jinja2 template engine, which returns the global config variable. In the
case of the Flask web server this variable includes the SECRET_KEY used for sign-
ing.

Table 4.2 shows the language-specific polyglots created. The average length of these
polyglots is only 5.75 characters. Compared to the 13 characters of polyglot PG6 or
the 16 characters of polyglot PG7, this is a significant reduction.

Table 4.2: The evaluation results of the eight created language-specific error poly-
glots, measured on the template injection playground. Language specifies
the programming language of the template engines for which the polyglot
was designed. Modified indicates in the number of test cases in which
the polyglot was rendered modified. Error indicates the number of test
cases in which the polyglot caused the template engine to throw an er-
ror. Unmodified indicates the number of test cases in which the polyglot
was rendered unmodified. Total Detected is the sum of Modified and
Error. Length is the length of the polyglot.

Polyglot Language Modified Error Unmodified Total Detected Length
${{/#}} Python 3 35 13 38 7
<%${{#{%>}} JavaScript 4 44 3 48 11
<%{{#{%>} Ruby 3 37 11 40 9
{{/}} PHP 4 28 19 32 5
<% Elixir 2 8 41 10 2
{{@ ASP.NET 1 25 25 26 3
{{ Golang 3 22 26 25 2
<%'#{@} Java 2 19 30 21 7

The language-specific polyglots are based on PG7 (<%'${{/#{@}}%>{{). Characters
unnecessary for the specific TEs were removed and the order was partially changed.
This simple but effective approach allowed to quickly create the language-specific
polyglots.



4.1 Detection of Template Injection Possibilities 39

4.1.3 Universal Non-Error Polyglots

As long as the errors are not caught, the error polyglots are very efficient. However,
they can usually be mitigated by a simple measure, namely catching the errors
instead of returning them to the user. In this case, the error polyglots cannot be
used to detect template injection possibilities unless there are behavioral differences.
Examples of such differences include:

• faster response times, because the template engine stops processing the tem-
plate earlier due to the error.

• a generic error page.

• not only the user input, but also the rest of the template is returned without
having been processed by the template engine.

To be able to detect template injection possibilities if errors are caught, non-error
polyglots were created. The big challenge with non-error polyglots is that as many
template engines as possible should render the polyglot modified instead of throwing
an error. This is where problems quickly arise, as Blade renders a 1 when encounter-
ing {{1}}, while Django throws an error, for example. This can be worked around
with comments, for example by using the expression {#{1}}#}. In Django, {# is
the start and #} is the end of a comment. So Django will render nothing when it
encounters {#{1}}#} instead of throwing an error. Blade, on the other hand, ren-
ders {# and #} unchanged, since it does not know this syntax, and therefore ends
up rendering {#1#}.

In the end, three universal non-error polyglots were created. All three together
render at least one modified response in all 51 test cases, while being only 12-14
characters long. For most template engines, a 1 was placed between various open-
ing and closing tags. This makes the expression between the opening and closing
tags as short as possible to reduce the likelihood that a template engine using these
opening and closing tags will throw an error. However, the template engine mus-
tache.js already throws an error when encountering {{1}}. The shortest expression
that is rendered modified for mustache.js is {{.}}. For other template engines,
the comments {##}, ##, /**/, and @* were used because they were significantly
shorter and less error-prone than other approaches, such as rendering a number.
Finally, "> was needed for the test case where Thymeleaf inserts the user input
into an inline expression to close it, and p is needed for Pug, which throws an
error for special characters at the beginning of lines. At this point, the individually
created template expressions such as #{1}, /**/, and @* were combined in various
ways until a combination was created in which each template engine rendered the
polyglot at least once modified. However, since some template engines consistently
throw errors when encountering template expressions added for other template en-
gines, three separate polyglots had to be created. These three universal non-error
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polyglots are shown in Table 4.3, along with their benchmarks measured on the
playground.

Table 4.3: The evaluation results of the three created universal non-error polyglots,
measured on the template injection playground. Modified indicates in
the number of test cases in which the polyglot was rendered modified.
Error indicates the number of test cases in which the polyglot caused
the template engine to throw an error. Unmodified indicates the num-
ber of test cases in which the polyglot was rendered unmodified. Total
Detected is the sum of Modified and Error. Length is the length of the
polyglot.

Polyglot Modified Error Unmodified Total Detected Length
p ">[[${{1}}]] 34 5 12 39 14
<%=1%>@*#{1} 22 2 27 24 12
{##}/*{{.}}*/ 15 20 16 35 13

4.1.4 Language-Specific Non-Error Polyglots

If the programming language in which a website is written is known, for example by
enumerating the web framework in use, the language-specific non-error polyglots can
be used instead of the universal non-error polyglots. These polyglots cover all test
cases for one specific programming language with only one polyglot; an exception
is the JavaScript polyglot, which renders the polyglot modified for all JavaScript
template engines except AngularJS and Pug (Inline). Pug (Inline) is an alternative
mode to Pug’s default mode. In this mode, the user input is inserted after a p
followed by a space that instructs Pug to create a paragraph. For six programming
languages, the polyglot is shorter than the universal ones, for Ruby it is a few char-
acters longer, and for JavaScript it is significantly longer. Especially for JavaScript
template engines the problem exists that many engines use identical opening and
closing tags, but a partially different expression syntax. Thus, many comments had
to be used to comment out error throwing expressions for certain template engines.
These eight language-specific non-error polyglots are shown in Table 4.4, along with
their benchmarks measured on the playground.

4.2 Identification of Template Engines

After detecting a template injection possibility, it is important to identify the tem-
plate engine in use in order to use template injection payloads designed for that
specific template engine. Similar to the template injection detection, polyglots can
be used to identify the specific template engine, significantly reducing the number
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Table 4.4: The evaluation results of the eight created language-specific non-error
polyglots, measured on the template injection playground. Language
specifies the programming language of the template engines for which
the polyglot was designed. Mod. indicates in the number of test cases in
which the polyglot was rendered modified. Error indicates the number
of test cases in which the polyglot caused the template engine to throw
an error. Unmod. indicates the number of test cases in which the polyglot
was rendered unmodified. Total Det. is the sum of Mod. and Error.
Length is the length of the polyglot.

Polyglot Language Mod. Error Unmod. Total Det. Length
{#${{1}}#}} Python 28 11 12 39 11
//*<!--{##<%=1%>{{!--{{1}}--}}-->*/#} JavaScripta 31 14 6 45 37
<%=1%>#{2}{{a}} Ruby 32 14 5 46 15
{{7}}} PHP 26 6 19 32 6
<%%a%> Elixir 8 6 37 14 6
{{1}}@* ASP.NET 28 5 18 33 7
{{.}} Golang 11 20 20 31 5
a">##[[${1}]] Java 15 2 34 17 13

aOnly 12 of the 14 JavaScript test cases rendered the polyglot modified. AngularJS and Pug
(Inline) rendered the polyglot unmodified

of requests required to identify the template engine. Thus, it is not necessary to
create a template expression for each single template engine that provides a unique
result. Instead, a small number of polyglots can be used to iteratively eliminate
more and more template engines from the list of possible candidates until only one
remains. This way, the polyglots created for template injection detection can also be
used for template engine identification. In 38 of the 51 test cases, an unambiguous
identification of the template engine is possible if errors are caught. In addition, un-
ambiguous identification is possible in six more test cases when errors are not caught.
No further distinction was made between ERB, Erubi and Erubis, since all three are
identical except for minor differences; especially the existing exploits are identical.
In order to be able to clearly identify the template engine in use in the remaining
13 test cases, three more polyglots were created.

The first polyglot is {{1in[1]}}. It allows to distinguish Blade from SimpleTem-
plate, Tornado from Twig (Sandbox), and the three template engines Jinja2, Nun-
jucks, and Twig from each other.

The second polyglot is ${"<%-1-%>"}. It allows to distinguish Underscore from Eta,
Mako from Chameleon, and the three template engines EEx, EJS, and ERB from
each other.

The third polyglot is #evaluate("a"). It allows to distinguish Velocity and Veloc-
ity.js from each other.
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Based on the results, a decision path graph could be created, as Kettle did to
distinguish four template engines from each other[6]. However, with 51 different
test cases for 44 different template engines, such a graph would be far too cluttered.
Therefore, a web page with an interactive table was created, which is presented in
the following Section 4.3.

4.3 Template Injection Table

The findings from the polyglots, which were created to detect template injection
possibilities and identify template engines, have been summarized in an interac-
tive table on a web page. This table can be used as an aid to first detect a tem-
plate injection possibility and then gradually exclude template engines from the list
of possible candidates with few polyglots until only one template engine remains.
The web page will be made available to the public shortly after the thesis is pub-
lished.

Each polyglot is a column header and each template engine has its own row. In
this way, either the answers of all template engines can be viewed vertically for each
polyglot, as well as the answers of all polyglots can be viewed horizontally for each
template engine. Furthermore, each polyglot can be easily copied to the clipboard
using a copy icon, and one of the answer options can be selected for each polyglot
using drop-down menus. This filters out the template engines to which the selected
answers do not apply. Furthermore, for each template engine, information such as
programming language, tested version, and links to the documentation and package
manager are given. Especially the information about the tested versions can be
relevant, as shown in the following.

Limitations The polyglots and all other tests were created with the latest version of
the template engines at time of writing. The versions used are listed in the Template
Injection Table and in the tables in Subsection 3.3.2. It is possible that the polyglots
will return a different result with an older or newer version of a template engine.
This is rather unlikely, since simple expressions were used for the most part, and
“breaking changes” to the template engine syntax will probably be avoided by the
developers. However, this possibility does exist.

Furthermore, the template engines were used in their default configuration. Any
changes to the configuration may cause the template engine to react differently to
a polyglot than expected. For example, Jinja2 is one of the few template engines
where the opening and closing tags can be configured. ${, #{, or something arbitrary
can be defined as an opening tag instead of {{.

Other factors that can alter template engine responses in the wild include changes to
user input or template engine output by the website, proxies, or other components.
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If certain characters are removed or changed from the user input, or even if new
characters are added, the template engine no longer receives the original polyglot.
As a result, the template engine’s response may be completely different from what
was anticipated.





5 Template Injection Scanner

This chapter introduces the template injection scanner, called TInjA (short for Tem-
plate Injection Analyzer), which allows to automatically perform the first two steps
of template injection methodology—detection and identification. First, we present
the two use cases for which the scanner was developed. Then we list the key features
of TInjA. This is followed by an explanation of the program flow, which consists of
a main flow and a scan flow. Next, we explain the measures how the scanner detects
template injection possibilities and identifies template engines. Finally, we describe
the setup and usage of the scanner.

5.1 Use Cases

TInjA is designed to scan single web pages as well as an arbitrary number of web
pages for possible template injection possibilities. The scanner can detect both
client-side and server-side template injection possibilities. Once a template injection
has been detected, further tests are performed to identify the template engine in
use. Whether a single web page or a large number of web pages are to be scanned
are different use cases, which can significantly differ in the requirements for the
scanner.

If a single web page is to be scanned, the scanner can be manually tailored to the
specific web page. This includes, for example, setting query or POST parameters of
the web page or specifying a session cookie.

With a large number of web pages that may originate from many different websites,
it would be impractical to manually set such parameters, cookies, etc. for each
individual web page. Therefore, TInjA allows importing a JSONL file that contains
this information for each web page to be tested. A crawler such as Katana1, which
was used for the large-scale scan described in Chapter 7, can automatically crawl a
list of web pages and add this required information to a JSONL file. The JSONL
file must contain a JSON object with the structure shown in Listing 7 on each
line.

1https://github.com/projectdiscovery/katana

https://github.com/projectdiscovery/katana
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1 {
2 "request":{
3 "method":"POST",
4 "endpoint":"http://example.com/path",
5 "body":"name=kirlia",
6 "headers":{
7 "Content-Type":"application/x-www-form-urlencoded"
8 }
9 }

10 }

Listing 7: The structure of JSON objects expected by Tinja in a JSONL file

5.2 Key Features

TInjA provides the following key features:

Automated execution of the first two steps of the template injection methodology
The scanner automatically performs the detection of template injections. Once
a template injection is detected, the template engine is identified.

Support for the most relevant template engines The scanner supports the 44 most
relevant template engines and can uniquely identify each one. The most rele-
vant template engines are discussed in chapter 3.4.

Report If desired, a report can be generated that contains information about tem-
plate injection vulnerabilities identified, error messages, and general informa-
tion such as the settings with which the scanner was initiated. The report
is appended with the results of a URL after the scan for this specific URL
has been finished. This ensures that the performance required to update large
reports remains low compared to, for example, keeping a large ever-growing
JSON object in memory and rewriting the entire file.

Efficiency Polyglots are used for detection and identification. Thus, only a few
requests are needed to identify a large number of template engines. In addition,
the average RAM usage during an active scan is typically between 20-40 MiB.

Customization A total of 23 flags can be used to customize the behavior of the
scanner. For example, it is possible to set custom headers and parameters, or
to set a rate limit. However, except for the one flag that is used to provide the
URLs to be tested, all flags are optional.
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5.3 Program Flow

To illustrate TInjA’s program flow, two simplified flow charts have been created.
Figure 5.1 shows the main program flow, while Figure 5.2 shows the program
flow of scanning a URL in more detail. Both flows are described in the follow-
ing.

5.3.1 Main Program Flow

First the report file is created and some information is written into it; for example,
the settings and URLs with which TInjA was initiated. Then a loop is started which
scans all URLs one by one. The more detailed scan process is described in the scan
flow below. When the scan of a URL is finished, the results are appended to the
report file. If there are still URLs left that have not been scanned yet, the scan
of the next URL is started. Otherwise, information such as how many template
injections were found and how long the scan took in total is added to the report file.
After that, the process is terminated successfully.

The report file is only generated if the --reportpath flag is set. Otherwise, the
program flow skips the initial creation, appending, and finishing steps of the re-
port.

Create report NoIs a
URL left? Finish report

Append to
report

Scan next URL
in queue

Yes

Figure 5.1: TInjA’s main program flow summarized.

5.3.2 Scan Flow

The scan flow is executed one by one for each parameter and some headers of a
request. The Host, X-Forwarded-For, Origin and other headers which have a
higher chance of being inserted into a template, for example, to reference the domain
a template engine is rendering output for, get scanned. First a “default request”
is sent. Default in this case means that the URL will be called as specified by the
command line flags. That is, if custom headers, cookies, parameters, or the like have
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been specified, they will be added to the request, but no payloads will be inserted yet.
The response to the default request is important as a comparison to the responses of
the requests where the polyglots were inserted later. After the default request has
finished, a “reflection request” is sent. This checks if the user input is reflected in
the response by replacing the user input with a randomly generated string, which is
sixteen characters long by default. The response to the reflection request will then
be searched for this random string. The information if and where the user input
is reflected is important for evaluating whether a polyglot is rendered modified or
not.

Next, the first polyglot is sent, namely the universal error polyglot PG7 (<%'${/#{@}}
%>{{). This will result in an error message for all 44 examined template engines. At
this point, there are four different possibilities:

1. There is no error response and no user input is reflected:
The scan flow is terminated because there appears to be no reflected or error-
based template injection.

2. There is no error response and user input is reflected:
The scanner now knows that errors are being caught and will take this into
account when evaluating all subsequent polyglot responses. Next, requests
with the three universal error-free polyglots are sent and their responses are
evaluated.

3. There is an error response and no user input is reflected:
The three universal non-error polyglots are skipped because the user input is
not being rendered. Instead, the scanner sends error polyglots.

4. There is an error response and user input is reflected:
Requests with the three universal non-error polyglots are sent and their re-
sponses are evaluated in order to check if at least one of them is being rendered
modified.

If the polyglots sent so far have only generated responses indicating that there is no
reflected or error-based template injection, the scan flow is terminated.

Otherwise, depending on the case, reflected or error-based template injection seems
to be present and TInjA checks whether a template engine can already be uniquely
identified. This is done by evaluating the response to each polyglot and checking
which template engines it applies to. In addition, TInjA checks before a polyglot
is sent whether it contributes at all to the exclusion of further template engines.
This ensures that with each additional polyglot sent, the possible template engines
can be further restricted. At this point there is a loop with again four possibili-
ties:

1. All supported template engines have been excluded:
This means that an unsupported template engine is used. The scanner returns
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that a template injection was found for an "unknown" template engine, and
the scan process is terminated.

2. A template engine was uniquely identified:
The scanner reports that a template injection exists for the identified template
engine, and the scan process is terminated.

3. More than one template engine is possible, but there is no polyglot left to
exclude another one:
The scanner returns both that a template injection has been detected and the
list of possible template engines. The scan process is terminated.

4. More than one template engine is still possible, and there are still polyglots
left to exclude another one:
The next polyglot is sent and the response is evaluated.

Send default
request

Yes

No
template
injection

detected?
Return

template
engine

identified?

Send next
polyglot

Send universal
non-error
polyglots

Send universal
error

polyglot PG7

Send reflection
request

NoIs input
reflected?

Yes No No

Figure 5.2: TInjA’s scan flow summarized.

5.4 Template Injection Detection and Template Engine
Identification

Tinja needs only four polyglots to detect template injection. The first is the uni-
versal error polyglot PG7, which triggers an error in all test cases of the template
injection playground. In addition, three universal non-error polyglots are used which
ensure that the polyglot is rendered modified at least once in each of the test cases.
For template engine identification, all polyglots examined in Chapter 4 are used. For
each supported template engine, the scanner has a list of expected responses for the
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polyglots. The lists of expected polyglot responses are further compared to the re-
ceived polyglot responses to exclude template engines that would respond differently
than expected. For each of the template engines examined, a unique identification
is possible using the polyglots. On average, TInjA requires 4.75 polyglots to detect
a template injection and identify the template engine when error messages are not
caught. When error messages are caught, the average number of polyglots required
increases by only one to 5.75.

In detecting rendered template injections and identifying template engines, TInjA
differs from scanners that do not rely on polyglots. For example, these scanners send
template expressions with mathematical calculations with long results for many dif-
ferent template engine syntaxes. The advantage of this approach is that it makes
it very easy to detect template injections. This is because the entire response can
be searched for the long result of the mathematical calculation, since it is very
unlikely that this number would occur there by chance. However, this has a dis-
tinct disadvantage: Due to the different syntaxes of template engines, many more
requests are needed to cover a large number of template engines, as with poly-
glots.

Unfortunately, it is not possible with polyglots to search the entire response for all
possible expected template engine responses. This would lead to too many false
positives. Further, the non-error polyglots need to use as few features as possi-
ble in order to avoid triggering errors. For example, when using polyglots with
mathematical calculations, the syntax may vary too much from template engine to
template engine, leading to more error messages. Also, polyglots should be as short
as possible, so that a web page with a limit on the length of user input causes fewer
problems. For these reasons, the template engines often render the polyglots only
as a single-digit number, for example. Searching for a complete answer will most
likely result in false positives.

Therefore, before sending polyglots and evaluating their responses, TInjA sends a
reflection request. This contains a long random string that can be searched for in
the response. TInjA then stores the characters before and after this string for all
places where it is reflected. When parsing a polyglot response, it can search for the
characters it stored before. Everything in between these characters is the rendered
polyglot. Figure 5.3 shows the response to a reflection request with the random string
2N3A0T7A2L0I1E7. If the response to a polyglot request is then received as in Fig-
ure 5.4, the characters preceding and following the random string can be used to de-
termine that the template engine rendered the polyglot as 1.

Furthermore, TInjA tries to keep the rate of false positives as low as possible for
supposed error-based template injections where the input is not reflected. For this
purpose, as soon as a polyglot triggers an error message, the same polyglot is sent
again, but with a backslash (\) in front of each character. This invalidates the
polyglot and it is no longer recognized as a template expression by template engines.
If the “backslashed” polyglot also throws an error message, the scanner concludes



5.4 Template Injection Detection and Template Engine Identification 51

Request

name=2N3A0T7A2L0I1E7

Response

...<p>Hello 2N3A0T7A2L0I1E7!</p><br>... 

Figure 5.3: A random string is used as user input in order to determine where it is
reflected.

Request

name={{1in[1]}}

Response

...<p>Hello 1!</p><br>... 

Figure 5.4: The saved preceding and subsequent strings are used to determine the
rendered polyglot.

that the error message was not generated by a template engine, but occurs for other
reasons. One possible reason might be that the website or web application firewall
is blocking the use of certain characters. On the other hand, if the backslashed
polyglot does not throw an error message, the scanner concludes that a template
engine is indeed processing the user input.

TInjA reports a suspected template injection if at least one polyglot was rendered
modified or caused an error response. Depending on how likely it is that a tem-
plate injection has been found, TInjA will report one of three possible levels of
certainty:

Low Every supported template engine has been excluded. If the polyglot is encoded
only once, either in URL or HTML, it is not counted as modified rendered.
This avoids a lot of false positives, since many web pages encode reflected user
input, as discovered in tests for the large-scale scan. However, there is still
a high risk of false positives. For example, if a web page or web application
firewall removes some special characters or entire template expressions, uses
an encoding other than URL or HTML, or encodes multiple times. Another
source of false positives is cases where user input is not rendered. In the case
of error-based template injections, the probability that a polyglot request will
return an error response for other reasons is not negligible.

Medium There are two options here:

1. Every supported template engine has been excluded, but at least one
response expected from one of the supported template engines has been
rendered. If one of the expected responses is rendered, the probability of
a false positive is reduced. On the one hand, this is because it is unlikely
that a web page will modify the polyglot exactly as one (of the supported)



52 5 Template Injection Scanner

template engines does. On the other hand, this eliminates the possibility
that the template injection was only detected by error responses.

2. Not all template engines have been excluded, but none of the expected
responses have been rendered. If no user input is reflected, and thus only
error-based template injection can be detected, TInjA cannot uniquely
determine the template engine in all cases. Nevertheless, the set of pos-
sible template engines can be narrowed down. Furthermore, there is still
the problem that a polyglot request may return an error response for
other reasons.

High Not all template engines were excluded, and at least one of the expected re-
sponses was rendered. Thus, the user input is reflected and the three universal
error-free polyglots, as well as any other polyglots sent, are responded to as
expected. If one or more responses to polyglot requests were not received, for
example, due to a timeout, it is possible that not all template engines could
be excluded, and thus several are still possible.

5.5 Setup and Usage

Setup TInjA is released in its own Github repository2. The repository will be made
available to the public shortly after the thesis is published. Since the scanner is devel-
oped in Go, there are two different recommended setup options.

• Standalone binaries for different operating systems are available on the release
page of the repository. These can be downloaded and run immediately without
any installation or dependencies. Among others, binaries for windows/amd64,
linux/amd64 and darwin/amd64 are available.

• If Golang is installed, the scanner can be installed via Golang. The command
go install -v github.com/Hackmanit/TInjA instructs Golang to compile
a standalone binary of TInjA and place it in $GOPATH/bin.

The advantage of the first method is that no Golang or other dependencies are
needed. However, this is only possible if a binary is available for the used operating
system. The second method has the advantage that it works independent of the
operating system, since it instructs Golang to compile a standalone binary for the
operating system.

It is also possible to download the repository and compile a standalone binary by
oneself. This allows to compile binaries for different computer architectures sup-
ported by Golang[2].

2https://github.com/Hackmanit/TInjA

https://github.com/Hackmanit/TInjA
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Usage The scanner needs at least one URL, the path to a list of URLs, or the
path to a JSONL file, which can contain additional information like the headers
to use or a request body. To test the URL “example.com” with default settings,
the scanner can be started like this tinja url -u http://example.com. For addi-
tional testing of the URL “example.com/url2”, -u http://example.com/url2 can
be appended. Similarly, |tinja url -u file:/path/to/file| can be used to specify the
path to a file containing a URL in each line. Since a page may be crawled for URLs
first, especially for larger fully automated scans, a JSONL file can also be imported
with tinja jsonl -j /path/to/file. The file is then searched line by line for a
JSON object named request, which can contain the string keys method, endpoint,
and body, as well as the array headers. This corresponds to the JSON output
of the Katana3 crawler, which was also used for the large-scale scan described in
Chapter 7. Using such a file allows to specify different headers, HTTP methods and
request bodies for each URL (or endpoint).

3https://github.com/projectdiscovery/katana

https://github.com/projectdiscovery/katana




6 Template Injection Scanner
Comparison

This chapter deals with the comparison of TInjA and four other template injection
scanners. First, we introduce all the contestants and compare several features and
characteristics. Next, we compare benchmarks determined using the Template Injec-
tion Playground, such as detection and identification rate, number of requests sent, or
RAM usage. Another playground called websitesVulnerableToSSTI 1 is also used to
compare the scanners. As a final practical comparison, we examine which of the scan-
ners are able to detect and identify an SSTI vulnerability in the intentionally vulner-
able web application Juice Shop2. Finally, we draw a conclusion from the comparison
and address identified opportunities to improve TInjA.

6.1 Overview of the Contestants

A total of six scanners were found, which either have been specifically developed
for template injections or are capable of detecting template injections in addition to
other vulnerabilities. One of these scanners, tplmap3, has not been maintained for
a long time and during this master’s thesis it was not possible to successfully run
it. Therefore it was not considered further. The five scanners considered for the
comparison are:

TInjA This free command-line template injection scanner was developed during this
master’s thesis. TInjA was tested in version 1.0.5.

SSTImap A free command line template injection scanner based on tplmap.
SSTImap has been tested in version 1.1.44.

gossti A free command line template injection scanner. gossti was tested in version
1.0.05. Unfortunately, the tested version, which was the only version available
at the time of writing, does not seem to work correctly. For example, gossti
does not replace the values of the POST parameters for POST requests. Also,

1https://github.com/DiogoMRSilva/websitesVulnerableToSSTI
2https://owasp.org/www-project-juice-shop/
3https://github.com/epinna/tplmap
4https://github.com/vladko312/SSTImap/tree/1619ed2161dc43f3676aef43b3a8ddfdd16430d7
5https://github.com/LeoFVO/gossti/releases/tag/v1.0.0

https://github.com/DiogoMRSilva/websitesVulnerableToSSTI
https://owasp.org/www-project-juice-shop/
https://github.com/epinna/tplmap
https://github.com/vladko312/SSTImap/tree/1619ed2161dc43f3676aef43b3a8ddfdd16430d7
https://github.com/LeoFVO/gossti/releases/tag/v1.0.0
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it only replaces the values of the query parameters with the payloads for the
Tornado template engine, not with those of the other supported template
engines. As a result, gossti has not been considered for the practical tests.

ZAProxy A free, full-featured web application security toolkit that includes a scan-
ner and many other features. This scanner can detect template injections and
many other vulnerabilities. In addition to the GUI, ZAProxy can also be used
from the command line. ZAProxy has been tested in version 2.13.06 with
the active scanner rules v56. The template injection plugins for the ZAProxy
scanner were developed in the thesis of Miguel Reis Silva[8].

BurpSuite Professional A full-featured web application security toolkit that in-
cludes many features and a scanner. This scanner can detect template in-
jections and many other vulnerabilities. There is a free community edition
as well as a paid professional edition, but only the paid edition contains the
scanner. The cost for the professional edition is currently 449€ per year. Be-
sides the GUI, BurpSuite can also be used via a GraphQL API. BurpSuite
professional was tested with version 2023.7.27.

Table 6.1 compares some features and characteristics of the scanners. Besides the
already mentioned features like program type, usage, and price, some other features
are compared. All scanners can detect SSTI, but only TInjA and BurpSuite can
detect CSTI. “Reflection Other Site” describes a scenario where a request is sent to
a web page, but the reflection of the user input can be seen on another web page.
An example would be a registration form where the email address entered during
registration is only visible on the profile page later. Only SSTImap and gossti
cannot detect a template injection in such a scenario. TInjA allows specifying an
additional URL that will be scanned for reflections. ZAProxy provides a plugin with
a scripting language called zest that can be used to send a request to a different URL
and replace the response with the actual response. BurpSuite provides macros that,
similar to ZAProxy, can be used to set the response to be replaced with the response
from another URL. All scanners except SSTImap and gossti can generate a report
summarizing the results. ZAProxy and BurpSuite use their integrated crawlers.
TInjA does not have an integrated crawler, but allows importing the output of
a crawler in JSONL format, as generated by the katana8 crawler. Rate limiting
is provided by TInjA, ZAProxy, and BurpSuite, but for BurpSuite an additional
plugin is required.

6https://www.zaproxy.org/docs/desktop/releases/2.12.0/
7https://portswigger.net/burp/releases/professional-community-2023-7-2?

requestededition=professional&requestedplatform=
8https://github.com/projectdiscovery/katana

https://www.zaproxy.org/docs/desktop/releases/2.12.0/
https://portswigger.net/burp/releases/professional-community-2023-7-2?requestededition=professional&requestedplatform=
https://portswigger.net/burp/releases/professional-community-2023-7-2?requestededition=professional&requestedplatform=
https://github.com/projectdiscovery/katana
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Table 6.1: Overview of the competing scanners and their features.
Scanner Usage Templ. Inj. Tactica Refl. URL Report Crawler Ratelimit.
TInjA CLI SSTI+CSTI Pol. yes (flag) yes import yes
SSTImap CLI SSTI Spec. - - - -
gossti CLI SSTI Spec. - - - -
ZAProxy GUI+CLI SSTI Pol.+Blind yes (zest) yes yes yes
BurpSuite Pro GUI+API SSTI+CSTI Spec. yes (macro) yes yes yes (plugin)

aPol = Polyglots. Spec = template expression—such as mathematical calculations—tailored to
a specific TE. Blind = Specific template expressions for blind scenarios—such as RCE with a
sleep statement—tailored to a specific TE.

6.2 Template Injection Test Approach

To compare how good the scanners are at detecting template injections, the Tem-
plate Injection Playground which was used to develop TInjA was used. Here, 50 of
the 51 test cases were tested with each scanner in two separate runs. One test case,
for the Vue.js template engine, was not included because the Vue.js implementation
can crash the JavaScript web server in case of an error. In the first test run, the
playground was used with its default settings. In the second test run, error mes-
sages were intercepted and in case of an error message, the user input was displayed
unchanged instead. During the test runs, the CPU and RAM usage caused by the
scanners was monitored. Furthermore, the time needed for the scan to finish was
measured and the requests sent to the playground were counted by the playground
itself. Both BurpSuite and ZAProxy scan a large number of vulnerabilities by de-
fault. To make their results comparable, a custom scan configuration was created for
both scanners. For ZAProxy, all tests except “Server Side Template Injection” and
“Server Side Template Injection (blind)” were disabled. In addition, the strength
was set to “Insane” for both test cases. The strength of a test is the maximum
number of requests that are sent by ZAProxy. At “Insane” the number of requests
is not limited. For BurpSuite, all tests were disabled except for “server-side template
injection” and “client-side template injection”.

TInjA was developed and tested on the Template Injection Playground. There-
fore, it has a non-negligible advantage over the other scanners when compared using
this playground. To mitigate this the scanners were also tested using another play-
ground. This other playground is called websitesVulnerableToSSTI 9 and it is the
only other Template Injection Playground that could be found. It was also used to
develop the template injection scanner plugins for ZAProxy. The playground offers
18 different template engines with a total of 20 test cases. In contrast to the Tem-
plate Injection Playground, the template engines Dust and Jade (an older version
of Pug) are included. Furthermore, some of the template engines are available in a

9https://github.com/DiogoMRSilva/websitesVulnerableToSSTI

https://github.com/DiogoMRSilva/websitesVulnerableToSSTI
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different version or configured differently. In addition, the web servers used or their
configuration is different. Due to these differences, the test results may differ from
those of the Template Injection Playground.

In addition to the two playground tests, each scanner was also challenged to find
the SSTI vulnerability in the OWASP Juice Shop10. The OWASP Juice Shop is an
intentionally vulnerable but realistic web application that has all sorts of vulnera-
bilities. Among other things, it has an SSTI vulnerability. In the paper “Evaluation
of Black-Box Web Application Security Scanners in Detecting Injection Vulnerabili-
ties”, five different vulnerability scanners—including ZAProxy and BurpSuite—were
tested to see if any of them could detect this SSTI[1]. The result was that none of
the scanners were able to detect it. The current test with BurpSuite and ZAProxy
will show whether they have improved in this regard.

6.3 Template Injection Test Results

A total of four different practical tests were performed with the four scanners TInja,
ZAProxy, SSTImap, and BurpSuite. gossti was not included in the practical test
because the only version available at this time does not work properly, as already
mentioned.

6.3.1 Template Injection Playground

The results of the first test run of the Template Injection Playground are shown
in Table 6.2. The playground was configured with its default settings. This means
that the user input was inserted into a template without any changes and was
rendered by the template engine. Error messages were not caught, but rendered
as well. TInjA detected template injection in all test cases and correctly identified
all template engines. ZAProxy was able to detect the template injection in 70% of
the test cases. However, ZAProxy does not try to determine which template engine
is used. SSTImap detects the template injection in only one test case less than
ZAProxy. In almost 53% of the detected template injections, SSTImap identifies
the correct template engine. However, in the remaining 47% of cases, the wrong
template engine is specified. BurpSuite detects the template injection possibility in
62% of the test cases, not far behind ZAProxy and SSTImap. BurpSuite identifies
the correct template engine in 39% of detected template injections and a wrong
template engine in another 39%. In the remaining cases, BurpSuite does not specify
a template engine at all.
10https://owasp.org/www-project-juice-shop/

https://owasp.org/www-project-juice-shop/
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Table 6.2: Evaluation results on the Template Injection Playground.
Scanner Detected Correct TE Wrong TE Requests Time CPU RAM
TInjA 50 50 - 698 00:22 0.5% 50.4 MiB
SSTImap 34 18 16 12,002 05:27 2% 24.7 MiB
ZAProxy 35 n/a n/a 3,554 00:57 13% 1.1 GiB
BurpSuite Pro 31 12 12 7,116 03:35 15% 1.5 GiB

Since one of the features of the Template Injection Playground is that it counts
the number of requests, the number of requests sent by each scanner can be eas-
ily gathered. TInjA clearly sends the least number of requests with 698 requests.
ZAProxy, which also uses polyglots, requires the second fewest requests with 3554.
BurpSuite sends 7116 requests, while SSTImap sends by far the most requests with
12,002. The duration of the scans were also measured. TInjA was the fastest with
22 seconds, followed by ZAProxy with 57 seconds. BurpSuite takes much longer
with 3 minutes and 35 seconds and SSTImap takes even longer with 5 minutes and
27 seconds.

Furthermore, the maximum CPU and RAM usage of the scanners was monitored
using the task manager of the Manjaro test system. The CPU usage is of course
highly dependent on the CPU in use, but there is still a clear difference between
the measured results. TInjA causes a CPU usage of only 0.5%, while SSTImap
causes the second lowest CPU usage with 2%. ZAProxy with 13% and BurpSuite
with 15% cause much higher utilization as full featured toolkits. RAM usage shows
similar results. SSTImap uses the least RAM with 24.7MiB. TInja uses slightly
more than twice as much with 50.4MiB, but more than half of it (29.4MiB) is used
by the headless browser needed to detect CSTI. ZAProxy uses 1.1 GiB of RAM and
BurpSuite uses the most with 1.5GiB.

The results of the second test run of the Template Injection Playground are shown
in Table 6.3. In the second run, the Template Injection Playground option to catch
error messages and instead reflect the user input unchanged was enabled. The results
are mostly the same as in the first run. Only for TInjA the number of requests
decreased. This is due to the fact that TInjA sends up to two more requests in case
of an error message to check whether the error message was caused by the polyglot
or by another reason. Accordingly, the number of requests in the second run is
lower. The time differences compared to the first run are minimal and probably due
to normal fluctuations. There was no measurable difference in the maximum CPU
and RAM usage.
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Table 6.3: Evaluation results on the Template Injection Playground with errors be-
ing caught.

Scanner Detected Correct TE Wrong TE Requests Time CPU RAM
TInjA 50 50 - 652 00:20 0.5% 50.4 MiB
SSTImap 34 18 16 12,002 05:17 2% 24.7 MiB
ZAProxy 35 n/a n/a 3,552 01:09 13% 1.1 GiB
BurpSuite Pro 31 12 12 7,215 03:06 15% 1.5 GiB

6.3.2 websitesVulnerableToSSTI

The results of the test run on the websitesVulnerableToSSTI playground are shown
in Table 6.4. TInjA and ZAProxy are the only scanners that detected the template
injection in all 20 test cases. BurpSuite was able to do so in 17 of the test cases and
SSTImap in only 14. TInjA was able to correctly identify the template engine for 13
of the 20 template injections detected in this playground. In the test case where the
Mako template engine is used and the user input is filtered, a wrong template engine
was identified caused by the filtering. In the other six cases, TInjA reported that
the template engine used was unknown. In the case of the Dust template engine,
this is indeed true. Dust was not taken into account when generating the polyglots,
since it was not considered relevant (anymore). In the other test cases, where TInjA
could not identify the template engine, this is either because the template engine
versions used are significantly older than in the Template Injection Playground, or
the implementation is different. In both cases, the responses of individual polyglots
may be different from those expected by TInjA.

SSTImap, like TInjA, correctly identifies 13 template engines and specifies an in-
correct template engine in one test case. BurpSuite identifies the correct template
engine for only nine of the detected template injections. For five detected template
injections BurpSuite does not specify a template engine and for three others it spec-
ifies an incorrect template engine. TInjA is again by far the fastest in scanning
this playground with only two seconds. ZAProxy is once again in second place with
26 seconds. SSTIMap is no longer the slowest by far and is close behind ZAProxy
with 36 seconds. BurpSuite takes the longest time with 49 seconds. The CPU and
RAM usage of the scanners are largely in line with the Template Injection Play-
ground measurements. The biggest difference can be seen in TInjA’s RAM usage.
This is only 14.6 MiB for WebsitesVulnerableToSSTI. For the Template Injection
Playground it is much higher at 50.4 MiB. This is mainly due to the fact that
websitesVulnerableToSSTI does not embed script tags in its web pages and there-
fore TInjA does not run the headless browser. The number of requests has not
been counted in this playground, as this is only a feature of the Template Injection
Playground.
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Table 6.4: Evaluation results on the websitesVulnerableToSSTI playground.
Scanner Detected Correct TE Wrong TE Time CPU RAM
TInjA 20 13 1 00:02 0.5% 14.6 MiB
SSTImap 14 13 1 00:36 1.5% 18.5 MiB
ZAProxy 20 n/a n/a 00:26 12.5% 1.2 GiB
BurpSuite Pro 17 9 3 00:49 14% 1.5 GiB

6.3.3 Juice Shop

The Juice Shop contains an SSTI vulnerability where the configurable username is
inserted into a template without further validation. This template is rendered by
the server-side Pug template engine and returned as a response to the request used
to change the username. The results of scanning Juice Shop with the four scanners
are presented in Table 6.5. TInjA detects the template injection and is the only
one of the tested scanners to identify the correct template engine. SSTImap and
BurpSuite also detect the template injection, but both report an incorrect template
engine. Thus, BurpSuite’s SSTI detection seems to have improved since the test in
“Evaluation of Black-Box Web Application Security Scanners in Detecting Injection
Vulnerabilities”[1], as BurpSuite did not find the SSTI at that time. However,
ZAProxy still does not detect this specific template injection vulnerability. SSTImap
and, of course, TInjA were not part of the 2022 evaluation, as only scanners covering
a wider range of injection vulnerabilities were evaluated.

Table 6.5: Evaluation results for the Juice Shop SSTI vulnerability.
Scanner This Evaluation Evaluation 2022[1]
TInjA Detected + Correct TE n/a
SSTImap Detected + Wrong TE n/a
ZAProxy Not detected Not detected
BurpSuite Pro Detected + Wrong TE Not detected

6.4 Conclusion

It is not surprising that the scanners focused on template injection—TInjA and
SSTImap—cause a significantly lower CPU and RAM load than the full-featured
web application security toolkits ZAProxy and BurpSuite. However, practical tests
also show that TInjA requires significantly fewer requests than the other scanners
due to the newly designed polyglots. This also results in TInjA being the fastest
for all scans, in addition to being single threaded. Furthermore, TInjA clearly leads
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in the number of detected template injections and correctly identified template en-
gines. Nevertheless, there is room for improvement for TInjA, as the evaluation of
the test run for the websitesVulnerableToSSTI playground showed. For example,
differences in the implementation of the template engine or large differences in the
versions caused the answers of a template engine to be different than expected for
some polyglots. An example of this is the Django template engine and the univer-
sal no-error polyglot p ">[[${{1}}]]. In the Template Injection Playground, the
error AppRegistryNotReady("Apps aren't loaded yet.") is thrown because no
settings file, which contains information about the apps to use, was loaded before-
hand. In the websitesVulnerableToSSTI playground, however, such a settings file
is loaded, so no error is thrown and p ">[[$1]] is rendered. Since TInjA contains
the polyglot responses from the Template Injection Playground, it expects an error
message in response to the polyglot, provided no error messages are caught. There-
fore, Django is excluded as a possible template engine after the polyglot response
is evaluated. This difference also occurs with the PHP-specific non-error polyglot
{{7}}} and the Dotnet-specific non-error polyglot {{1}}@*. All other polyglots
are rendered the same by Django in both playgrounds. Such differences that may
occur with some polyglots need to be considered and, if discovered, incorporated
into future enhancements to TInjA and also the interactive template injection ta-
ble.
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This chapter describes the large-scale scan that was performed during this thesis and
the insights gained from both the process and the results of the scan. First, we dis-
cuss how the domains to be scanned were selected. Then we outline the approach of
the scan, with a focus on what tools were used and how they were used. Next, we ad-
dress some problems that occurred during the scan and made it necessary to restart
the scan several times. After that, we discuss various statistics, such as how many
URLs were tested and what the results of the scan were. Subsequently, we describe
improvements to TInjA that can be implemented to avoid many of the false positives.
Finally, we draw a conclusion from the large-scale scan.

7.1 Selection of Domains

The top 1000 apex domains on the Tranco list generated on 11 July 20231 were
selected as the target of the large-scale scan for template injections. The Tranco list
is a ranking of the world’s most trafficked apex domains and uses several methods to
prevent statistical manipulation [7]. To ensure that the scan is legal and ethical, only
domains that explicitly allow scanning with automated tools were tested. To filter
out all other domains, four of the largest bug bounty platforms were searched for the
top 1000 domains. Among other things, bug bounty platforms allow companies to
expose their domains and websites for testing under certain conditions. If someone
finds a vulnerability, they can receive a "bug bounty," which can include monetary
rewards, merchandise, or virtual recognition, such as points on the platform or entry
into a hall of fame. Some of the companies with one of the top 1000 domains have
their own bug bounty programs, such as Google and Facebook. However, only bug
bounty programs on the four selected platforms were considered. This was mainly
due to time constraints, as these platforms present the conditions in a unified and
clear manner, making it possible to quickly find out whether a domain is eligible
or not. In addition, the effort required to check whether a domain appears in a
bug bounty program on a bug bounty platform is significantly less than the effort
required to find out whether a domain generally is part of an individual bug bounty

1https://tranco-list.eu/list/W9Z99/1000

https://tranco-list.eu/list/W9Z99/1000
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program and where to find it. The four bug bounty platforms used are Hackerone2,
Bugcrowd3, Intigriti4, and YesWeHack5.

In total, 80 of the top 1000 apex domains were part of a bug bounty program on one
of the four bug bounty platforms. Of these 80, 72 allowed automated scanning with-
out restriction or under certain conditions, while eight explicitly prohibited it. The
specific restrictions for automated scanning were as follows:

Rate limiting Some bug bounty programs required rate limiting, meaning that a
maximum number of requests were allowed to be sent per second or minute.
The rate limits specified for various domains range from one to five requests
per second.

Custom header or user agent Some bug bounty programs require a specific user
agent or header to be set. This header should include, for example, the name
of the bug bounty platform or one’s username on the bug bounty platform.

Some programs only allowed one or a few subdomains of the apex domain to be
tested, while most allowed any subdomain.

7.2 Scan Approach

First, the subdomains of the 72 apex domains in question were enumerated, provided
that each subdomain could be crawled. Next, these domains were crawled and the
crawl results were passed to TInjA. Finally, the results of the TInjA report were eval-
uated. This approach is described in greater detail below:

Subdomain enumeration For the apex domains where scanning of arbitrary do-
mains was allowed, Subfinder6 was used to enumerate subdomains. Subfinder
is a passive subdomain enumeration tool that uses various sources to find sub-
domains of a given domain. Compared to an active subdomain enumeration,
where for example subdomains are tried by a brute force approach, the pas-
sive enumeration has the advantage that it is much faster. This is due to the
fact that existing databases are queried for subdomains of a given domain.
Besides the standard sources like waybackarchive and crtsh, shodan was in-
cluded by adding a shodan API key to the subfinder configuration file. With
subfinder -d example.com the subdomain enumeration was started for each
apex domain in question.

Next, the enumerated subdomains were filtered. Subdomains that did not re-
spond at all or had a status code other than 200, 301 or 302 were discarded.

2https://www.hackerone.com/
3https://www.bugcrowd.com/
4https://www.intigriti.com/
5https://www.yeswehack.com/
6https://github.com/projectdiscovery/subfinder

https://www.hackerone.com/
https://www.bugcrowd.com/
https://www.intigriti.com/
https://www.yeswehack.com/
https://github.com/projectdiscovery/subfinder


7.2 Scan Approach 65

Thus, subdomains that are no longer used or that only display an error page,
for example, due to missing authorization, are discarded. To do this, the httpx7

tool was used with the following command: httpx -list /list/of/subdomains -
silent -mc 200,301,302 -rl 1 -fr -o /list/of/subdomains-active
This creates a filtered list of subdomains, including the destination of a redi-
rect. Next, it is useful to filter out redirects that redirect to the same subdo-
main to avoid duplicates, or redirects that redirect to a different apex domain
to avoid leaving the allowed scope. To automate this filtering, a Python script
was written (see Appendix B).

Crawling The katana8 crawler was used to crawl the subdomains. A separate
crawler was started for each apex domain. The crawler was set to crawl a maxi-
mum of 250 URLs per domain, to automatically fill web page forms, and to save
the results to a file in JSONL format. In addition, the crawler was instructed to
maintain a rate limit of one request per second to avoid being blocked by a web
application firewall, for example, and to not leave the specified domain to stay
in scope. Furthermore, a breadth-first search with a maximum depth of five
was chosen. The command used is: katana -list /list/of/subdomains-act
ive-filtered -automatic-form-fill -jsonl -omit-raw -omit-body -st
rategy breadth-first -field-scope fqdn -rate-limit 1 -concurrency
1 -parallelism 1 -depth 5 -ct 250 -o /list/of/subdomains-active-

filtered-crawled

If a bug bounty program specified that a particular user-agent or other header
should be set, this was added to the command. In addition to the URLs, the
crawl results include other information such as the HTTP methods used and
the request body. This means that not only GET, but also POST requests
can be recreated.

Scanning TInjA allows to import crawl results in JSONL format, the same way the
crawler Katana stores them. An individual scanner was started for each file
containing the crawl results of one of the apex domains. TInjA was started
with the following command: tinja jsonl --jsonl /list/of/subdomains-
active-filtered-crawled --csti --reportpath /list/of/subdomains-a
ctive-filtered-crawled-scanned -r 1
Thus, a general rate limit of one request per second was used, regardless of
whether the bug bounty program requested one or not, to keep the risk of
being blocked as low as possible. In addition to SSTI, CSTI was also scanned
by enabling the use of a headless browser.

7https://github.com/projectdiscovery/httpx
8https://github.com/projectdiscovery/katana

https://github.com/projectdiscovery/httpx
https://github.com/projectdiscovery/katana
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7.3 Problems During the Scan

The scan needed to be restarted several times as the large number of diverse websites
resulted in several edge cases that were not apparent during the playground tests.
Most of the problems were due to use of the library rod9. This allows the use of a
headless browser, which is needed to detect CSTI. For example, one problem was
that code examples and documentation often use methods with a “must” prefix.
These methods panic in the event of an error because they are meant for quick
testing, not production use. This was not obvious during the implementation in
TInjA, causing the scanner to panic a few times.

There were also some RAM usage improvements implemented because some URLs
were causing very high RAM usage. In the last started scan each TInjA instance
had a RAM usage of 30-60 MiB. However, depending on the URL, this could in-
crease up to 250MiB in marginal cases. Though the CPU load remained minimal as
expected.

7.4 Statistics and Results

A total of 160,319 domains were enumerated for the 72 eligible apex domains. After
filtering these domains, 6,227 domains remained out of a total of 69 apex domains.
Three apex domains blocked httpx requests, resulting in all of their domains being
discarded. Based on the 6,227 domains, 81,937 URLs were crawled. Of these, 27,003
URLs had a total of 51,728 query parameters. Further, 1,882 URLs were from POST
requests containing a total of 9,094 POST parameters.

The scan of the 81,937 URLs was completed within five days with some breaks
in between. In total, TInjA reported 10,438 possible template injections, of which
854 were high certainty, 840 were medium certainty, and 8,744 were low certainty.
For those with a high certainty, 804 times Velocity, 46 times VelocityJS, two times
Pystache, and two times Thymeleaf (Inline) were reported as the identified template
engines. The low confidence results were not considered further. This is because
they are rather information that the user input is rendered in some way modified
and therefore the probability of false positives is very high. The high and medium
confidence findings were manually checked on a spot check basis, as the number of
findings is very high for the given time frame. All checked results were classified as
false positives.

9https://github.com/go-rod/rod
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7.5 False Positives

Improvements for TInjA have been identified to eliminate all of the high certainty
false positives and most of the medium certainty false positives. These improvements
are:

Hybrid Approach Scanning with polyglots is very efficient, as shown in the scanner
comparison. However, there is a significant drawback: It is much more prone
to false positives than, for example, scanning with mathematical template ex-
pressions in a large number of different syntaxes. Therefore, a hybrid approach
can combine the advantages of both approaches. As before, the polyglots are
used to detect a possible template injection and to identify the template en-
gine. In order to ensure that it is not a false positive, a template expression
specifically adapted to the identified template engine is then sent. This tem-
plate expression is one that has a very small chance of being a false positive,
such as a mathematical calculation. This hybrid approach thus combines the
efficiency of polyglots with the extremely low false positive probability of tai-
lored template expressions, such as mathematical calculations.

Additional Checks Some polyglots are significantly more prone to false positives
than others. This includes, for example, the universal non-error polyglot
{##}/*{{.}}*/. This polyglot was responsible for almost all of the high cer-
tainty false positives and also a proportion of the medium certainty false pos-
itives. The reason for this is as follows: Some template engines, including
Velocity and VelocityJS, use ## to start a comment, resulting in only a { be-
ing rendered. However, during the large-scale scan, some sites removed one #
and everything that followed it if there was a # in the user input. This resulted
in only a { being rendered, too. To detect these cases, if only a { is rendered
when the polyglot is sent, the polyglot can be sent again, but with only a
single #. If again only a { is rendered, this is a false positive, as the template
engines tested only interpret two # characters as comments.

7.6 Conclusion

Over a period of five days, 81,937 URLs from 69 apex domains on the Tranco
Top 1000 list were scanned for template injections. 10,438 possible template in-
jections were reported, of which 854 had a high, 840 a medium, and 8,744 a low
certainty. However, no template injections could be confirmed during manual ver-
ification. There may be several reasons for this. For example, template injection
vulnerabilities may be present in the URLs tested, but not identified by TInjA. An-
other possibility is that there are no template injection vulnerabilities at all, because
no insecure user input is inserted into templates, or simply no template engines are
used at all.
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Nevertheless, the scanning of the many different domains has been very instructive.
Bugs in TInjA that had not been found in the previous tests on the playgrounds
and the juice shop were identified and could be fixed. In addition, improvements
for TInjA have been identified that can eliminate all of the high confidence and
most of the medium confidence false positives reported during the large-scale scan.
One of these improvements is a new hybrid approach. This combines the efficiency of
polyglots with the very low false positive probability of a template expression tailored
to a specific template engine such as a mathematical calculation. The polyglots
are used to detect possible template injection and to identify the template engine.
Subsequently, a template expression tailored to the identified template engine is sent
to verify the finding and eliminate the potential for a false positive.
Once these false positive mitigations are implemented, TInjA will be well prepared
for a new large-scale scan.



8 Conclusion

In the context of this master thesis, an extensive template injection playground was
created. In addition to various features that can be used to modify the behavior of
the playground, such as several optional countermeasures, another unique feature
is the large number of 46 implemented template engines. For the selection of the
template engines, several sources were used to determine which template engines are
currently the most relevant. Based on these most relevant template engines, “error”
polyglots were developed that differ from previous polyglots in two main ways: They
cover all template engines on the playground, and they are much shorter. However,
error polyglots are not able to detect template injections when errors thrown by a
template engine are caught. Therefore, a new type of template injection polyglots
has been created, the “non-error” polyglots. These are based on the idea that as
many template engines as possible render the polyglot modified, for example, by
removing parts of it. Three non-error polyglots were created, covering all template
engines of the playground. In addition, language-specific polyglots have been cre-
ated, both of the type error and non-error. These often have the advantage of being
much shorter and can be used if the programming language of the web applica-
tion is known, for example, by the framework used. In order to be able to use
these polyglots in a meaningful way, a web page with an interactive template injec-
tion table has been created. It contains all the polyglots that have been examined
and newly created, including all the responses from the examined template engines.
When going through the template injection methodology, this table can be used to
quickly and efficiently detect template injection possibilities and identify the specific
template engines using the polyglots.

Furthermore, the novel polyglots have been used to program the template injection
scanner TInjA. TInjA is the only scanner we know of that uses polyglots to both
detect template injection possibilities and identify template engines. In various tests,
it has proven to be significantly more efficient than the other template injection
scanners tested. TInjA has by far the best detection and identification rate on
two different playgrounds, and is also the only scanner that correctly identifies the
template engine used in the SSTI vulnerability of the realistic but intentionally
vulnerable web application Juice Shop. In addition, TInjA requires significantly
fewer requests—at least five times fewer than the second place and at least 17 times
fewer than the last place—making its scanning significantly faster. The Template
Injection Playground, the Template Injection Table, and the Template Injection
Scanner TInjA are made available to the public. This makes them available for



future research as well as for cybersecurity enthusiasts and professionals who want
to learn about or detect template injection possibilities.

Finally, a large-scale scan was performed on 81,937 URLs from 69 apex domains on
the Tranco Top 1000 list. Due to the high number of 854 high certainty findings
and 840 medium certainty findings, these were only manually verified on a sample
basis. All spot checks were evaluated as false positives and therefore no template
injection vulnerability was verified. Nevertheless, the scan was very instructive as
some edge case bugs were identified and fixed. Furthermore, countermeasures for
the false positives were found. One of them is a “hybrid approach”. This combines
the efficiency of polyglots with the very low false positive probability of a tem-
plate expression tailored to a template engine such as a mathematical calculation.
The polyglots are used to detect possible template injection vulnerabilities and to
identify the template engine. Subsequently, a template expression tailored to the
template engine is sent to verify the finding and eliminate the potential for a false
positive.



Glossary

CSRF A Cross-Site Request Forgery is an attack that tricks an authenticated user
into sending a malicious request. 16, 29, 71

CSRF token A Cross-Site Request Forgery token is a secret value generated by a
web server and embedded in a response. The web server then verifies that
the following request contains the correct secret value. This can be used to
mitigate CSRF attacks. 13, 16, 28, 29, 31

CSTI Client-side template injection is a web application vulnerability which enables
an attacker to inject template expressions into a template rendered by a client-
side template engine. 6, 14, 20, 56, 59, 65, 66

JSONL JSON Lines—also known as newline-delimited JSON—is a data format
where each line contains a JSON object. It is commonly used for log files or
other large files. 45, 46, 53

RCE Remote code execution is an application vulnerability which enables an at-
tacker to execute code on the vulnerable system. 6, 7, 10, 24, 57

SQLi SQL injection is an application vulnerability which enables an attacker to
alter an SQL statement; eventually giving the attacker unauthorized access to
the database. 11

SSTI Server-side template injection is a web application vulnerability which enables
an attacker to inject template expressions into a template rendered by a server-
side template engine. 2–4, 6, 10, 12–15, 20, 24, 55, 56, 58, 61, 65, 69

TE A template engine dynamically interprets a template containing template lan-
guage at runtime and generates an output format, such as HTML. 14–16, 19,
20, 22–29, 57, 59–61

XSS Cross-Site-Scripting is a web application vulnerability which tries to execute
an attacker script within the context of the website owner within the user’s
browser. 6, 8, 11, 28
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A TInjA’s Help Output

Figure A.1: The main help output of TInjA.



Figure A.2: The url command help output of TInjA.



Figure A.3: The jsonl command help output of TInjA.





B filter-urls.py



1 import os
2 from urllib.parse import urlparse
3

4 def get_fqdn(url):
5 parsed_url = urlparse(url)
6 return parsed_url.netloc
7

8 def get_second_level_domain(url):
9 parsed_url = urlparse(url)

10 domain_parts = parsed_url.netloc.split('.')
11 if len(domain_parts) >= 2:
12 return '.'.join(domain_parts[-2:])
13 return parsed_url.netloc
14

15 def remove_mismatched_urls(filename):
16 with open(filename, 'r') as file:
17 lines = file.readlines()
18

19 output_lines = []
20 existing_domains = set() # Set to save the already present domains
21

22 for line in lines:
23 line = line.strip()
24 if '[^^[[35m' in line and '^^[[0m]' in line:
25 start = line.index('[^^[[35m') + len('[^^[[35m')
26 end = line.index('^^[[0m]')
27 first_url = line[:start-6].strip()
28 second_url = line[start:end].strip()
29 first_domain = get_second_level_domain(first_url)
30 second_domain = get_second_level_domain(second_url)
31 if first_domain == second_domain:
32 second_domain_fqdn = get_fqdn(second_url)
33 if second_domain_fqdn not in existing_domains:
34 output_lines.append(second_url)
35 existing_domains.add(second_domain_fqdn)
36 else:
37 domain = get_fqdn(line)
38 if domain not in existing_domains:
39 output_lines.append(line)
40 existing_domains.add(domain)
41

42 filtered_filename = filename + '.filtered'
43 with open(filtered_filename, 'w') as file:
44 file.write('\n'.join(output_lines))
45

46 # Search for files in the current directory with the ".active" extension
47 directory = os.getcwd()
48 for filename in os.listdir(directory):
49 if filename.endswith('.active'):
50 full_path = os.path.join(directory, filename)
51 remove_mismatched_urls(full_path)

Listing 8: Script to filter out duplicate domains that redirect to the same subdomain
and domains that redirect to a different apex domain


